Navigation Links
Sanford-Burnham receives US Air Force grant to perform next-generation toxicity screens

ORLANDO, Fla., and LA JOLLA, Calif., November 12, 2013 A bicoastal group of scientists at Sanford-Burnham Medical Research Institute (Sanford-Burnham) was recently awarded a three-year grant from the U.S. Department of the Air Force to assess the potential toxicity of large collections of chemicals. The goal of the project is to provide an early and relevant assessment of potential toxicities in a rapid, cost-effective manner.

"The current approach to assessing the health risks of chemical exposure relies extensively on data from animal models. But humans may react very differently to chemicals than animals," said Anne Bang, Ph.D., director, Cell Biology in Sanford-Burnham's Conrad Prebys Center for Chemical Genomics (Prebys Center). "As a way to help solve this problem, we have developed a technology platform that relies on high-throughput, human cell-based assays to analyze processes in a cell when it is exposed to a certain chemical."

For these chemical screens, a team of scientists from Sanford-Burnham's La Jolla, Calif., and Orlando, Fla., campuses uses induced pluripotent stem cells (iPSCs) stem cells that are genetically reprogrammed adult cells to test thousands of potential toxins. In a second step, the scientists analyze the iPSC-derived cells to assess mitochondrial function and identify subsets that demonstrate a potential for toxic effects.

"Given the thousands of chemicals humans are exposed to in the course of their lifetime, there is a clear unmet need to find better ways to screen for toxicity," said Darrin K. Ott, Lt. Col., USAF, B.Sc., Ph.D., CIH Chief, Research Section Occupational and Environmental Health Dept., at the USAF School of Aerospace Medicine." Our men and women in the Air Force are no different in this regard and we need to push the cutting edge of toxicological research because they do spend time in challenging environments, performing complex missions that have unique chemical mixtures present or even advanced materials that are newly developed for the high-tech capabilities they bring. This collaboration with Sanford-Burnham should lay the foundation for a smarter way to determine potential toxicity and better ensure the health of our personnel and environment."

The collaboration is a prime example of how scientists at Sanford-Burnham combine their expertise in stem-cell research with the high-throughput screening capabilities at the Prebys Center to make a tangible impact on human health.

The Challenges of Toxicity Testing

The goal of toxicity testing is to assess the risks posed to human populations at ambient exposure levels. For the past 50 years, this goal has been met by high-dose experimental testing in animals with specific approaches for extrapolation from high to lower doses and from the experimental animals to the human population.

These observational studies remain of great value, but yield little understanding of the molecular mechanisms underlying the toxic response, thereby limiting the ability to predict potential human risk. Adding to the scope of the problem is the exponential increase in the rate of discovery of new chemicals.

It is estimated that there are more than 100,000 new chemicals for which little to no risk assessment has been performed. While animal studies represent the foundation of toxicology, current methodologies, capacities, and budgets of the regulatory agencies tasked with toxicity testing are unable to meet the critical and growing need for testing.


Contact: Deborah Robison
Sanford-Burnham Medical Research Institute

Related biology news :

1. Californias stem cell agency boosts heart disease research at Sanford-Burnham
2. NIH New Innovator Award helps Sanford-Burnham scientist pursue high-risk, high-reward project
3. Sanford-Burnham and Intrexon Corporation establish collaboration to accelerate stem cell research
4. Sanford-Burnham and 60° Pharmaceuticals to pursue promising target for the treatment of dengue fever
5. Sanford-Burnham Medical Research Institute and Mayo Clinic extend collaborative agreement
6. In search for a vaccine, IU biologist receives $2.3 million to explore chlamydia genomics
7. Renowned geneticist R. Rodney Howell receives ACMG Foundation Lifetime Achievement Award
8. UF receives $1 million from Keck Foundation to study mechanisms of inherited disease
9. Gladstone scientist Warner C. Greene receives Washington University School of Medicine Alumni Award
10. Carnegies Wolf B. Frommer receives Bogorad Award for Excellence in Plant Biology
11. UC Riverside plant cell biologist receives top scientific honor
Post Your Comments:
(Date:4/28/2016)... -- First quarter 2016:   , Revenues ... first quarter of 2015 The gross margin was 49% ... and the operating margin was 40% (-13) Earnings per ... from operations was SEK 249.9 M (21.2) , Outlook ... 7,000-8,500 M. The operating margin for 2016 is estimated ...
(Date:4/15/2016)... CHICAGO , April 15, 2016  A ... companies make more accurate underwriting decisions in a ... offering timely, competitively priced and high-value life insurance ... health screenings. With Force Diagnostics, rapid ... and lifestyle data readings (blood pressure, weight, pulse, ...
(Date:3/31/2016)... 31, 2016   ... the "Company") LegacyXChange is excited to release ... soon to be launched online site for trading 100% ... ) will also provide potential shareholders a sense of ... to an industry that is notorious for fraud. The ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... NY (PRWEB) , ... June 24, 2016 , ... While ... machines such as the Cary 5000 and the 6000i models are higher end machines ... is the height of the spectrophotometer’s light beam from the bottom of the cuvette ...
(Date:6/23/2016)... ... 23, 2016 , ... Mosio, a leader in clinical research ... Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio revisits the ... tools, and strategies for clinical researchers. , “The landscape of how patients receive ...
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
(Date:6/23/2016)... A person commits a crime, and the detective ... the criminal down. An outbreak of foodborne illness ... (FDA) uses DNA evidence to track down the bacteria that ... It,s not. The FDA has increasingly used a complex, cutting-edge ... illnesses. Put as simply as possible, whole genome sequencing is ...
Breaking Biology Technology: