Navigation Links
Sanford-Burnham and Intrexon Corporation establish collaboration to accelerate stem cell research
Date:1/3/2013

LA JOLLA, Calif., January 3, 2013 Sanford-Burnham Medical Research Institute, a nonprofit research institution and one of the largest iPSC generators in the world, and Intrexon Corporation, a leading synthetic biology company, today announced a new collaboration to accelerate stem cell research. Under the agreement, Sanford-Burnham will gain access to sophisticated proprietary cellular selection and gene regulation technologies that are not currently on the market, including Intrexon's Laser-Enabled Analysis and Processing (LEAP) instrument and RheoSwitch Therapeutic System (RTS). As part of the agreement, Intrexon may obtain commercial and intellectual property rights resulting from technological advances made under the collaboration.

"I'm looking forward to merging and melding our expertise," said Evan Y. Snyder, M.D., Ph.D., professor and director of Sanford-Burnham's Stem Cell Research Center and Stem Cell and Regenerative Biology Program. "We'll bring our iPSC and gene therapy expertise to the table. Likewise, our colleagues at Intrexon will share their knowledge of how best to use the technologies. We envision we'll be meeting with them frequently and sharing insights to further advance the platforms for stem cell applications."

Sanford-Burnham is currently building the world's largest collection of human iPSCs generated from individual patients and healthy volunteers. The Stem Cell Research Center's expertise and resources are available to all Sanford-Burnham scientists, as well as other researchers at nonprofit and for-profit research organizations around the world.

LEAP for induced pluripotent stem cells

The LEAP instrument is an automated system that provides high-throughput cell imaging coupled with versatile laser-based cell processing. The instrument's applications include rapid and accurate in situ purification of adherent cells and cell colonies, features that are particularly useful when working with complex human iPSC cultures. The LEAP instrument enables scientists in Sanford-Burnham's Stem Cell Research Center to improve and accelerate their methods for generating human iPSCs and their differentiated progeny, which are used in the study of a variety of diseases. iPSCs are stem cells derived from adult cellsa research advance that garnered the 2012 Nobel Prize in Physiology or Medicine.

"Intrexon's LEAP instrument will allow us to isolate high-quality human iPSCs while eliminating non- or partially-reprogrammed cells or other undesirable cell types in the culturea laborious process that previously took a trained technician a lot of time," explained Yang Liu, Ph.D., manager of Sanford-Burnham's Stem Cell Research Center. "Together with other automated equipment available in our facility, the new capabilities will free up valuable resources, allowing us to provide an even greater level of service to our internal and external users."

"We are big believers in iPSCs and their potential for use in new therapeutic modalities," said Fred Koller, Ph.D., vice president and executive director of the Intrexon Institute for Biomolecular Research. "It's exciting for us to use our technology collaboratively with Sanford-Burnham's team of premier scientists. We look forward to applying LEAP, RTS and other Intrexon tools in this stem cell research, and are proud to assist in the diverse medical advancements enabled by this collaborative effort with Sanford-Burnham."

Controlling gene expression with RTS

RTS technology, a proprietary biological "switch" that enables inducible controlled gene expression by administering an activator ligand, will give Sanford-Burnham scientists a new method to regulate when certain genes are turned on or off in cells. The system also provides more accurate delivery of new therapeutic candidates to specific tissues in animal models.

"We're interested in the RTS technology because it will help us to turn genes on or off in stem cells that have been transplanted. For example, it can be used for therapeutic protein expression in stem cells that home to and help eradicate brain tumors," said Snyder.

"New cell-based therapies may someday result from our LEAP and RTS technologies," Koller said. "Working with leaders in the field of academic stem cell research will leverage both parties' technologies to get there faster."


'/>"/>

Contact: Heather Buschman
hbuschman@sanfordburnham.org
858-795-5343
Sanford-Burnham Medical Research Institute
Source:Eurekalert  

Related biology news :

1. NIH New Innovator Award helps Sanford-Burnham scientist pursue high-risk, high-reward project
2. Californias stem cell agency boosts heart disease research at Sanford-Burnham
3. Statistics & Data Corporation Selects MedNet Solutions As Strategic Technology Partner
4. Eliza Corporation and BlueCross BlueShield of South Carolina Drive Awareness and Healthier Behavior to Increase Colorectal Cancer Screenings by 45 Percent
5. ShanghaiBio Corporation Partners with Ingenuity Systems to Address Challenges in Analysis and Interpretation of Genomics Data
6. Medbox, Inc. Announces Top-Tier Rating by Dun & Bradstreet Credibility Corporation
7. Rensselaer awarded gift to establish fellowship in astrobiology
8. New grant to establish pan-continental bioinformatics research network in Africa
9. JoVE establishes Librarian Advisory Board
10. Turf study to monitor runoff, establish fertilizer management practices
11. Saving lives: Philanthropists establish $100,000 cancer challenge
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Sanford-Burnham and Intrexon Corporation establish collaboration to accelerate stem cell research
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... to expand at a CAGR of 25.76% during the ... is the primary factor for the growth of the ... https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global stem ... technology, application, and geography. The stem cell market of ...
(Date:3/30/2017)... March 30, 2017 Trends, opportunities and forecast ... behavioral), by technology (fingerprint, AFIS, iris recognition, facial recognition, ... others), by end use industry (government and law enforcement, ... and banking, and others), and by region ( ... Asia Pacific , and the Rest ...
(Date:3/24/2017)... Research and Markets has announced the addition of the ... Forecast to 2025" report to their offering. ... The Global Biometric Vehicle Access System ... over the next decade to reach approximately $1,580 million by 2025. ... forecasts for all the given segments on global as well as ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... , Oct. 11, 2017  VMS BioMarketing, a leading provider ... nationwide oncology Clinical Nurse Educator (CNE) network, which will launch ... for communication among health care professionals to enhance the patient ... office staff, and other health care professionals to help women ... cancer. ...
(Date:10/10/2017)... ... 2017 , ... San Diego-based team building and cooking events company, Lajollacooks4u, has ... The bold new look is part of a transformation to increase awareness, appeal to ... period. , It will also expand its service offering from its signature gourmet cooking ...
(Date:10/10/2017)... CRUZ, Calif. , Oct. 10, 2017 ... grant from the NIH to develop RealSeq®-SC (Single Cell), ... kit for profiling small RNAs (including microRNAs) from single ... Analysis Program highlights the need to accelerate development of ... "New techniques for measuring ...
(Date:10/9/2017)... ... October 09, 2017 , ... At its national board meeting in North ... in Harvard University’s Departments of Physics and Astronomy, has been selected for membership in ... winning team for the 2015 Breakthrough Prize in Fundamental physics for the discovery of ...
Breaking Biology Technology: