Navigation Links
Sanford-Burnham and Intrexon Corporation establish collaboration to accelerate stem cell research

LA JOLLA, Calif., January 3, 2013 Sanford-Burnham Medical Research Institute, a nonprofit research institution and one of the largest iPSC generators in the world, and Intrexon Corporation, a leading synthetic biology company, today announced a new collaboration to accelerate stem cell research. Under the agreement, Sanford-Burnham will gain access to sophisticated proprietary cellular selection and gene regulation technologies that are not currently on the market, including Intrexon's Laser-Enabled Analysis and Processing (LEAP) instrument and RheoSwitch Therapeutic System (RTS). As part of the agreement, Intrexon may obtain commercial and intellectual property rights resulting from technological advances made under the collaboration.

"I'm looking forward to merging and melding our expertise," said Evan Y. Snyder, M.D., Ph.D., professor and director of Sanford-Burnham's Stem Cell Research Center and Stem Cell and Regenerative Biology Program. "We'll bring our iPSC and gene therapy expertise to the table. Likewise, our colleagues at Intrexon will share their knowledge of how best to use the technologies. We envision we'll be meeting with them frequently and sharing insights to further advance the platforms for stem cell applications."

Sanford-Burnham is currently building the world's largest collection of human iPSCs generated from individual patients and healthy volunteers. The Stem Cell Research Center's expertise and resources are available to all Sanford-Burnham scientists, as well as other researchers at nonprofit and for-profit research organizations around the world.

LEAP for induced pluripotent stem cells

The LEAP instrument is an automated system that provides high-throughput cell imaging coupled with versatile laser-based cell processing. The instrument's applications include rapid and accurate in situ purification of adherent cells and cell colonies, features that are particularly useful when working with complex human iPSC cultures. The LEAP instrument enables scientists in Sanford-Burnham's Stem Cell Research Center to improve and accelerate their methods for generating human iPSCs and their differentiated progeny, which are used in the study of a variety of diseases. iPSCs are stem cells derived from adult cellsa research advance that garnered the 2012 Nobel Prize in Physiology or Medicine.

"Intrexon's LEAP instrument will allow us to isolate high-quality human iPSCs while eliminating non- or partially-reprogrammed cells or other undesirable cell types in the culturea laborious process that previously took a trained technician a lot of time," explained Yang Liu, Ph.D., manager of Sanford-Burnham's Stem Cell Research Center. "Together with other automated equipment available in our facility, the new capabilities will free up valuable resources, allowing us to provide an even greater level of service to our internal and external users."

"We are big believers in iPSCs and their potential for use in new therapeutic modalities," said Fred Koller, Ph.D., vice president and executive director of the Intrexon Institute for Biomolecular Research. "It's exciting for us to use our technology collaboratively with Sanford-Burnham's team of premier scientists. We look forward to applying LEAP, RTS and other Intrexon tools in this stem cell research, and are proud to assist in the diverse medical advancements enabled by this collaborative effort with Sanford-Burnham."

Controlling gene expression with RTS

RTS technology, a proprietary biological "switch" that enables inducible controlled gene expression by administering an activator ligand, will give Sanford-Burnham scientists a new method to regulate when certain genes are turned on or off in cells. The system also provides more accurate delivery of new therapeutic candidates to specific tissues in animal models.

"We're interested in the RTS technology because it will help us to turn genes on or off in stem cells that have been transplanted. For example, it can be used for therapeutic protein expression in stem cells that home to and help eradicate brain tumors," said Snyder.

"New cell-based therapies may someday result from our LEAP and RTS technologies," Koller said. "Working with leaders in the field of academic stem cell research will leverage both parties' technologies to get there faster."


Contact: Heather Buschman
Sanford-Burnham Medical Research Institute

Related biology news :

1. NIH New Innovator Award helps Sanford-Burnham scientist pursue high-risk, high-reward project
2. Californias stem cell agency boosts heart disease research at Sanford-Burnham
3. Statistics & Data Corporation Selects MedNet Solutions As Strategic Technology Partner
4. Eliza Corporation and BlueCross BlueShield of South Carolina Drive Awareness and Healthier Behavior to Increase Colorectal Cancer Screenings by 45 Percent
5. ShanghaiBio Corporation Partners with Ingenuity Systems to Address Challenges in Analysis and Interpretation of Genomics Data
6. Medbox, Inc. Announces Top-Tier Rating by Dun & Bradstreet Credibility Corporation
7. Rensselaer awarded gift to establish fellowship in astrobiology
8. New grant to establish pan-continental bioinformatics research network in Africa
9. JoVE establishes Librarian Advisory Board
10. Turf study to monitor runoff, establish fertilizer management practices
11. Saving lives: Philanthropists establish $100,000 cancer challenge
Post Your Comments:
Related Image:
Sanford-Burnham and Intrexon Corporation establish collaboration to accelerate stem cell research
(Date:11/10/2015)... Nov. 10, 2015  In this report, ... basis of product, type, application, disease indication, ... this report are consumables, services, software. The ... safety biomarkers, efficacy biomarkers, and validation biomarkers. ... are diagnostics development, drug discovery and development, ...
(Date:11/4/2015)... York , November 4, 2015 ... a new market report published by Transparency Market Research "Home ... Growth, Trends and Forecast 2015 - 2022", the global home ... US$ 30.3 bn by 2022. The market is estimated ... forecast period from 2015 to 2022. Rising security needs ...
(Date:10/29/2015)... 29, 2015 Daon, a global leader in ... released a new version of its IdentityX Platform ... North America have already installed IdentityX v4.0 ... a FIDO UAF certified server component as ... activate FIDO features. These customers include some of the ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... 24, 2015 SHPG ) announced today that ... Piper Jaffray 27 th Annual Healthcare Conference in ... at 8:30 a.m. EST (1:30 p.m. GMT). --> SHPG ... will participate in the Piper Jaffray 27 th Annual Healthcare ... Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ...
(Date:11/24/2015)... ... 24, 2015 , ... In harsh industrial processes, the safety ... sensors can represent a weak spot where leaking process media is a possible ... housings , which are designed to tolerate extreme process conditions. They combine rugged ...
(Date:11/24/2015)... Nov. 24, 2015 HemoShear Therapeutics, LLC, ... drugs for metabolic disorders, announced today the appointment ... Board of Directors (BOD). Mr. Watkins is the ... Genome Sciences (HGS), and also served as the ... Jim Powers , Chairman and CEO of HemoShear ...
(Date:11/23/2015)... Women with a certain type of lung nodule visible on ... lung cancer than men with similar nodules, according to a ... of the Radiological Society of North America ... Lung nodules are small masses of tissue in the ... their appearance on CT. Solid nodules are dense, and they ...
Breaking Biology Technology: