Navigation Links
Salmonella utilize multiple modes of infection

Scientists from the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany have discovered a new, hitherto unknown mechanism of Salmonella invasion into gut cells: In this entry mode, the bacteria exploit the muscle power of cells to be pulled into the host cell cytoplasm. Thus, the strategies Salmonella use to infect cells are more complex than previously thought. According to the World Health Organization, the number of Salmonella infections is continuously rising, and the severity of infections is increasing. One of the reasons for this may be the sophisticated infection strategies the bacteria have evolved. The striking diversity of invasion strategies may allow Salmonella to infect multiple cell types and different hosts.

"Salmonella do not infect their hosts according to textbook model," says Theresia Stradal, group leader at the Helmholtz Centre in Braunschweig, who has recently accepted a call to the University of Mnster. "Only a single infection mechanism has seriously been discussed in the field up till now without understanding all the details," adds Klemens Rottner, now Professor at the University of Bonn.

All entry mechanisms employed by Salmonella target the so-called actin cytoskeleton of the host cell. Actin can polymerise into fine and dynamic fibrils, also called filaments, which associate into networks or fibres. These structures stabilise the cell and enable it to move, as they are constantly built up and taken down. One of the most important core elements is the Arp2/3 complex that nucleates the assembly of actin monomers into filaments.

Extensions of the cell membrane are filled with actin filaments. In the commonly accepted infection mechanism, Salmonella abuses the Arp2/3 complex to enter the host cell: the bacteria activate the complex and thus initiate the formation actin filaments and development of prominent membrane extensions, so-called ruffles. These ruffles surround and enclose the bacteria so that they end up in the cell interior. Last year, the research groups headed by Theresia Stradal and Klemens Rottner discovered that Salmonella can also reach the cell interior without initiating membrane ruffles. With this, the researchers disproved a long-standing dogma.

In their recent study, the experts from Braunschweig now describe a completely unknown infection mechanism. The results have just appeared in the latest issue of the leading journal Cell Host & Microbe. In this new infection mechanism, Salmonella also manipulate the actin cytoskeleton of the host cell. This time, however, they do not induce the generation of new filaments, but activate the motor protein myosin II. The interplay of actin and myosin II in muscle cells is well known: in a contracting muscle, myosin and actin filaments slide along each other and this way shorten the muscle; it contracts.

In epithelial cells, the contractile structures are less organised but work similarly. Here, actin and myosin II form so-called stress fibres that tightly connect to the membrane. During an infection, stress fibres at the entry site can contract and pull the bacteria into the cell. "This way of infection operates independently from the Arp2/3 complex, the central component of the 'classic' infection mechanism," says Jan Hnisch, who worked on this project as postdoctoral researcher.


Contact: Dr. Bastian Dornbach
Helmholtz Association of German Research Centres

Related biology news :

1. The medium is the message: Manipulating salmonella in spaceflight curtails infectiousness
2. Yale researchers uncover secrets of salmonellas stealth attack
3. Hygienic Lab at U. Iowa first to confirm salmonella in nationwide outbreak
4. Probiotic without effect against Salmonella
5. Faster Salmonella detection now possible with new technique
6. Mechanism uncovered behind Salmonella virulence and drug susceptibility
7. MU scientist develops salmonella test that makes food safer, reduce recalls
8. Zooming in on the weapons of Salmonella
9. Genetic testing for breast or ovarian cancer risk may be greatly underutilized
10. Response to immune protein determines pathology of multiple sclerosis
11. Multiple sclerosis research charges ahead with new mouse model of disease
Post Your Comments:
(Date:11/4/2015)... , November 4, 2015 ... new market report published by Transparency Market Research "Home Security ... Trends and Forecast 2015 - 2022", the global home security ... 30.3 bn by 2022. The market is estimated to ... period from 2015 to 2022. Rising security needs among ...
(Date:10/29/2015)... Va. , Oct. 29, 2015 Daon, ... today that it has released a new version of ... customers in North America have ... IdentityX v4.0 also includes a FIDO UAF certified ... are already preparing to activate FIDO features. These customers ...
(Date:10/29/2015)... 2015 Today, LifeBEAM , a ... 2XU, a global leader in technical performance sports ... with advanced bio-sensing technology. The hat will allow ... key biometrics to improve overall training performance. As ... will bring together the most advanced technology, extensive ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... /PRNewswire/ - Zenith Epigenetics Corp. ("Zenith" or the "Company") today ... to its Board of Directors to replace Dr. ... wealth of experience as co-founder of Resverlogix, with expertise in ... --> --> Dr. Wong remarked, "I am ... Zenith,s long standing expertise in epigenetics and the advanced stage ...
(Date:11/30/2015)... Atlanta, GA (PRWEB) , ... November 30, 2015 ... ... announced a new globally touring exhibition Jurassic World: The Exhibition, opening in March ... Exhibition will embark on a worldwide tour including several North American tour dates. ...
(Date:11/30/2015)... 30, 2015 Human Longevity, Inc. (HLI), the ... acquired Cypher Genomics, Inc., a leading genome informatics company ... software solutions. The San Diego -based ... Cypher CEO and Co-founder, Ashley Van Zeeland , Ph.D., ...  Financial details of the deal were not disclosed. ...
(Date:11/30/2015)... SAN DIEGO , Nov. 30, 2015  HUYA ... China,s pharmaceutical innovations, today announced ... Korea Drug Development Fund (KDDF) to foster collaboration between ... Korean development and commercialization of healthcare products for the ... potential as an important source of new innovative preclinical ...
Breaking Biology Technology: