Navigation Links
Salmon garnish points the way to green electronics

Professor Andrew Steckl, a leading expert in light-emitting diodes, is intensifying the properties of LEDs by introducing biological materials, specifically salmon DNA.

Electrons move constantly think of tiny particles with a negative charge and attention deficit disorder. It is through the movement of these electrons that electric current flows and light is created.

Ohio Eminent Scholar Andrew Steckl is one of the world's leading experts in photonics. (Photo by Dottie Stover)

Steckl is an Ohio Eminent Scholar in UCs Department of Electrical and Computer Engineering. He believed that if the electrons mobility could be manipulated, then new properties could be revealed.

In considering materials to introduce to affect the movement of the electrons, Steckl evaluated the source of materials with an eye to supply, especially materials that do not harm the environment.

Biological materials have many technologically important qualities electronic, optical, structural, magnetic, says Steckl. But certain materials are hard for to duplicate, such as DNA and proteins. He also wanted a source that was widely available, would not have to be mined, and was not subject to any organization or countrys monopoly. His answer?

Salmon sperm.

Salmon sperm is considered a waste product of the fishing industry. Its thrown away by the ton, says Steckl with a smile. Its natural, renewable and perfectly biodegradable. While Steckl is currently using DNA from salmon, he thinks that other animal or plant sources might be equally useful. And he points out that for the United States, the green device approach takes advantage of something in which we continue to be a world leader agriculture.

Steckl is pursuing this research in collaboration with the Air Force Research Laboratory. The research was featured recently in such premier scientific publications as the inaugural issue of naturephotonics and on the cover of Applied Physics Letters.

The Air Force had already been working with DNA for other applications when they came to us and said, We know that you know how to make devices, quotes Steckl. They also knew that they had a good source of salmon DNA. It was a match made in heaven.

So began Steckls work with BioLEDs, devices that incorporate DNA thin films as electron blocking layers. Most of the devices existing today are based on inorganic materials, such as silicon. In the last decade, researchers have been exploring using naturally occurring materials in devices like diodes and transistors.

The driving force, of course, is cost: cost to the producer, cost to the consumer and cost to the environment Steckl points out, but performance has to follow.

And what a performance lights, camera, action!

DNA has certain optical properties that make it unique, Steckl says. It allows improvements in one to two orders of magnitude in terms of efficiency, light, brightness because we can trap electrons longer.

When electrons collide with oppositely charged particles, they produce very tiny packets of light called photons.

Some of the electrons rushing by have a chance to say hello, and get that photon out before they pass out, Steckl explains. The more electrons we can keep around, the more photons we can generate. Thats where the DNA comes in, thanks to a bunch of salmon.

BioLEDs make colors brighter.

DNA serves as a barrier that affects the motion of the electrons, says Steckl. It allows Steckl and his fellow researcher, the Air Forces Dr. James Grote, to control the brightness of the light that comes out.

The story continues, says Steckl, again smiling. Im receiving salmon sperm from researchers around the world wanting to see if their sperm is good enough. The next step is to now replace some other materials that go into an LED with biomaterials. The long-term goal is be able to make green devices that use only natural, renewable and biodegradable materials.


Contact: Wendy Hart Beckman
University of Cincinnati

Related biology news :

1. Researchers reveal the infectious impact of salmon farms on wild salmon
2. Alaskan puzzles, monitoring provide insight about North Pacific salmon runs
3. To sea or not to sea: When it comes to salmon sex, size sometimes doesnt matter
4. Divergent life history shapes gene expression in brains of salmon
5. Salmonella caught red-handed
6. Escapee farmed salmon infiltrate fitter wild populations
7. Leave it to salmon to leave no stone unturned
8. Salmonella bacteria use RNA to assess and adjust magnesium levels
9. Salmon go veggie to save wild fish stocks
10. Special chip provides better picture of salmon health
11. Salmon farms kill wild fish, study shows
Post Your Comments:
(Date:11/16/2015)... Calif. , Nov 16, 2015  Synaptics ... of human interface solutions, today announced expansion of ... TouchView ™ touch controller and display driver ... revolution of smartphones. These new TDDI products add ... TD4100 (HD resolution), TD4302 (WQHD resolution), and TD4322 ...
(Date:11/10/2015)... Nov. 10, 2015  In this report, ... basis of product, type, application, disease indication, ... this report are consumables, services, software. The ... safety biomarkers, efficacy biomarkers, and validation biomarkers. ... are diagnostics development, drug discovery and development, ...
(Date:11/2/2015)... 2015  SRI International has been awarded a contract ... services to the National Cancer Institute (NCI) PREVENT Cancer ... expertise, modern testing and support facilities, and analytical instrumentation ... toxicology studies to evaluate potential cancer prevention drugs. ... Cancer Drug Development Program is an NCI-supported pipeline to ...
Breaking Biology News(10 mins):
(Date:11/28/2015)... ... ... • Jeon Jin Bio Corp, a Korean Biotech venture company, has developed ... Bird Free, an oil-based, gel formula made from natural ... smell, taste and touch, enabling safe, effective avian control without toxic chemicals , ...
(Date:11/26/2015)... 26, 2015 --> ... in imaging technologies, announced today that it has received a ... the Horizon 2020 European Union Framework Programme for Research and ... trial in breast cancer. , --> ... --> --> The study aims to ...
(Date:11/25/2015)... HOLLISTON, Mass. , Nov. 25, 2015 /PRNewswire/ ... ), a biotechnology company developing bioengineered organ implants for ... will present at the LD Micro "Main Event" ... p.m. PT. The presentation will be webcast live and ... will also be available at the conference for one-on-one ...
(Date:11/25/2015)... November 25, 2015 The ... is a professional and in-depth study on the ...      (Logo: ) , ... industry including definitions, classifications, applications and industry chain ... the international markets including development trends, competitive landscape ...
Breaking Biology Technology: