Navigation Links
Salk researchers develop novel glioblastoma mouse model
Date:1/4/2009

LA JOLLA, CAResearchers at the Salk Institute for Biological Studies have developed a versatile mouse model of glioblastomathe most common and deadly brain cancer in humansthat closely resembles the development and progression of human brain tumors that arise naturally.

"Mouse models of human cancer have taught us a great deal about the basic principles of cancer biology," says Inder Verma, Ph.D., a professor in the Laboratory of Genetics. "By definition, however, they are just that: approximations that simulate a disease but never fully capture the molecular complexity underlying disease in humans."

Trying to mimic randomly occurring mutations that lie at the heart of all tumors, the Salk researchers used modified viruses to shuttle cancer-causing oncogenes into a handful of cells in adult mice. Their strategy, described in the Jan. 4, 2009 online issue of the journal Nature Medicine, could not only prove a very useful method to faithfully reproduce different types of tumors but also to elucidate the nature of elusive cancer stem cells.

The most frequently used mouse cancer model relies on xenografts: Human tumor tissue or cancer cell lines are transplanted in immuno-compromised mice, which quickly develop tumors. "These tumors are very reproducible, but this approach ignores the fact that the immune system can make or break cancer," says first author Tomotoshi Marumoto, Ph.D., a former postdoctoral researcher in the Verma lab and now an assistant professor at the Kobe Medical Center Hospital in Kobe, Japan. Other animal models either express oncogenes in a tissue-specific manner or shut down the expression of tumor suppressor genes in the whole tissue. "But we know that tumors generally develop from a single cell or a small number of cells of a specific cell type, which is one of the major determinants of the characteristics of tumor cells," explains postdoctoral researcher and co-author Dinorah Friedmann-Morvinski.

To sidestep the shortcomings of currently used cancer models, the Salk team harnessed the power of lentiviral vectors to infect nondividing as well as dividing cells and ferry activated oncogenes into a small number of cells in adult, fully immunocompetent mice. After initial experiments confirmed that the approach was working, Marumoto injected lentiviruses carrying two well-known oncogenes, H-Ras and Akt, into three separate brain regions of mice lacking one copy of the gene encoding the tumor suppressor p53: the hippocampus, which is involved in learning and memory; the subventricular zone, which lines the brain's fluid-filled cavity; and the cortex, which governs abstract reasoning and symbolic thought in humans.

He specifically targeted astrocytes, star-shaped brain cells that are part of the brain's support system. They hold neurons in place, nourish them, digest cellular debris, and are suspected to be the origin of glioblastoma. Within a few months, massive tumors that displayed all the histological characteristics of glioblastoma multiforme preferentially developed in the hippocampus and the subventricular zone.

The ability of adult stem cells to divide and generate both new stem cells (called self-renewal) as well as specialized cell types (called differentiation) is the key to maintaining healthy tissues. The cancer-stem-cell hypothesis posits that cancers grow from stem cells in the same way healthy tissues do. Known as tumor-initiating cells with stem like properties these cells have many characteristics in common with normal stem cells in that they are self-replicating and capable of giving rise to populations of differentiated cells.

To test whether the induced glioblastomas contained bona fide cancer stem cells, Marumoto isolated cultured individual tumor cells in the lab. These cells behaved and looked just like neural stem cells. They formed tiny spheresoften called tumor spheresand expressed proteins typically found in immature neural progenitor cells. When given the right chemical cues, these brain cancer stem cells matured into neurons and astrocytes.

"They displayed all the characteristics of cancer stem cells, and less than 100 and as few as 10 cells were enough to initiate a tumor when injected into immunodeficient mice," says Friedmann-Morvinski. Most xenograft models for brain tumors using tumor cell lines require at least 10,000 cells.

"These findings show that our cancer model will not only allow us to start understanding the biology of glioblastoma but will also allow us to answer many questions surrounding cancer stem cells," says Verma. Although the work described to date pertains to glioblastoma, Verma and his team are currently using this methodology to investigate lung, pancreatic, and pituitary cancers.


'/>"/>

Contact: Gina Kirchweger
kirchweger@salk.edu
858-453-4100 x1340
Salk Institute
Source:Eurekalert

Related biology news :

1. New genetic markers for ulcerative colitis identified, researchers report in Nature Genetics
2. The gold standard: Biodesign Institute researchers use nanoparticles to make 3-D DNA nanotubes
3. Researchers engineer pancreatic cell transplants to evade immune response
4. UC Davis researchers find molecule that targets brain tumors
5. UT Public Health researchers find link to severe Staph infections
6. SUNY Downstate researchers find that memory storage molecule preserves complex memories
7. Researchers make breakthrough in the production of double-walled carbon nanotubes
8. Researchers find chink in the armor of viral tummy bug
9. Biomedical researchers create artificial human bone marrow in a test tube
10. Princeton researchers discover new type of laser
11. UT Southwestern researchers identify gene linked to inherited form of fatal lung disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/21/2016)... 21, 2016 NuData Security announced today that ... of principal product architect and that Jon ... customer development. Both will report directly to ... moves reflect NuData,s strategic growth in its product ... customer demand and customer focus values. ...
(Date:6/16/2016)... FRANCISCO , June 16, 2016 ... size is expected to reach USD 1.83 ... by Grand View Research, Inc. Technological proliferation and ... banking applications are expected to drive the market ... ) , The development of advanced ...
(Date:6/9/2016)... control systems is proud to announce the introduction of fingerprint attendance control software, allowing ... are actually signing in, and to even control the opening of doors. ... ... ... Photo - http://photos.prnewswire.com/prnh/20160609/377487 ...
Breaking Biology News(10 mins):
(Date:12/4/2016)...  In five studies being presented today during the ... Exposition in San Diego , researchers ... delivery of life-saving treatments to patients with a variety ... carry therapies directly to the sites in the body ... substantial advantage over traditional, systemic methods. The studies highlight ...
(Date:12/2/2016)... HARBOR, N.Y. , Dec. 2, 2016 More ... Laboratory,s (CSHL) 11th Double Helix Medals dinner ( DHMD ). The gala ... in New York City and honored ... for their contributions, respectively, to health and medicine and the ... Muhammad Ali in 2006, the event has raised $40 ...
(Date:12/2/2016)... , Dec. 2, 2016 CytRx Corporation ... development company specializing in oncology, today announced the appointment ... sarcoma surgeon, industry consultant, and private healthcare investor, to ... a healthcare leader with clinical and strategic experience at ... CytRx,s Chairman and CEO. "As one of the world,s ...
(Date:12/2/2016)... ... December 01, 2016 , ... ... DNA microarray comparative genomic hybridization (array CGH) for HER2 genomic subtyping in ... molecular test results from tumors with previously documented positive, negative, and equivocal ...
Breaking Biology Technology: