Navigation Links
SRNL, automakers to develop high-performance wireless sensors networks

Several industries use wireless sensors, which can monitor chemical processes or equipment activity and then transmit the data over a wireless network. Still, many facilities that could benefit from the use of wireless sensors must continue to use a wired network instead, because the reliability, speed and security of the current generation of wireless sensors do not meet their needs.

The U.S. Department of Energy's Savannah River National Laboratory and U.S. automakers now have teamed up to develop a new high-performance platform for these sensors that not only serves the industry's needs, but also meets the DOE National Nuclear Security Administration's requirements for security and reliability for use in its facilities.

SRNL has entered into a cooperative research and development agreement with the United States Council for Automotive Research LLC (USCAR), the collaborative automotive technology organization for Chrysler Group LLC, Ford Motor Company and General Motors Corporation. The purpose of the collaboration is to develop a new platform for short range wireless sensors networks that meets the NNSA requirements, and can also be adopted as the industry standard.

Under the agreement, SRNL will develop designs and specifications for the new wireless hardware, then engage a qualified wireless manufacturer to make a prototype, which the partners will test and validate. The ultimate goal of the agreement is to produce a standard for wireless sensor platforms that can be adopted by the International Society of Automation, a global instrumentation, systems and automation standards body.

"As partners with SRNL in this endeavor, we look forward to creating an industry standard for wireless sensor platforms that meets the needs of both industry and government and enables significant cost savings for both," said Don Walkowicz, USCAR executive director. "Traditionally, collaborations between the U.S. automakers and U.S. government laboratories have resulted in innovation and great success."

Both the automotive industry and the NNSA have needs for wireless sensors that are reliable, secure, high speed and able to resist interference from existing systems. This agreement between a DOE laboratory and USCAR to produce a single, agreed-upon platform will broaden the customer base for resulting sensor designs, making it more attractive for developers to design hardware that meets the NNSA requirements.

In the automotive industry, for example, replacing hard-wired body shop robots with wireless-controlled robots would be a prime application area for a new secure, wireless sensor network.

NNSA and its contractors use sensors in their facilities to monitor chemical processes, vibration on large pumps and blowers, and environmental conditions such as shock, vibration, and linear acceleration. The ability to use wireless, rather than wired, sensors, when constructing new facilities or installing new sensors in existing facilities will bring considerable cost savings. NNSA sensors typically exist in gloveboxes or "hot cells," which protect workers from exposure to radioactive or chemical hazards. The cost of running cables in "hot" facilities is more than $2,000 per foot. The electrical/instrument portion of such a facility may have a budget of as much as $400 million; a conservative estimate of the cost savings to use wireless sensors networks has been estimated at $50 million. Existing facilities that are already contaminated would be able to add instrumentation at less than 10% the cost of a wired solution.

"We are pleased to be working with the three U.S. automakers through USCAR to create an industry standard for wireless sensor platforms," said Joe Cordaro, SRNL advisory engineer and former chair of the NNSA Network of Senior Scientists and Engineers, who is serving as SRNL lead for the initiative. "Our common needs will drive a design and framework that are applicable in government and non-government facilities, ultimately providing economies of scale, and ensuring robust and reliable requirements for wireless sensor platforms globally."


Contact: Angeline French
DOE/Savannah River National Laboratory

Related biology news :

1. Gender, coupled with diabetes, affects vascular disease development
2. New target for anti-flu drug development
3. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
4. A new radiation therapy treatment developed for head and neck cancer patients
5. Carnegie Mellon scientists develop nanogels that enable controlled delivery of carbohydrate drugs
6. Princeton engineers develop low-cost recipe for patterning microchips
7. M2SYS Partners With Gnosis Medical Services to Provide Accurate Patient Identification in Developing Countries Through Innovative Biometrics Solution
8. Selexis Announces Advanced Approach to Maximize Power of Genetic Elements for Rapid Development of High Performance Cell Lines
9. UCR engineers to develop new tool to measure how environmental exposures affect health
10. Researchers develop simple method to create natural drug products
11. Researchers developing device to predict proper light exposure for human health
Post Your Comments:
(Date:10/29/2015)... 2015  Connected health pioneer, Joseph C. Kvedar ... technology-enabled health and wellness, and the business opportunities that ... The Internet of Healthy Things . Long before ... existed, Dr. Kvedar, vice president, Connected Health, Partners HealthCare, ... moving care from the hospital or doctor,s office into ...
(Date:10/29/2015)... 2015 Today, LifeBEAM , a ... 2XU, a global leader in technical performance sports ... with advanced bio-sensing technology. The hat will allow ... key biometrics to improve overall training performance. As ... will bring together the most advanced technology, extensive ...
(Date:10/27/2015)... October 27, 2015 Munich, ... Gaze Mapping technology (ASGM) automatically maps data from mobile ... Glasses , so that they can be quantitatively ... Munich, Germany , October 28-29, 2015. ... data from mobile eye tracking videos created with ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... 25, 2015  PharmAthene, Inc. (NYSE MKT: PIP) announced ... stockholder rights plan (Rights Plan) in an effort to ... (NOLs) under Section 382 of the Internal Revenue Code ... PharmAthene,s use of its NOLs could be substantially limited ... in Section 382 of the Code. In general, an ...
(Date:11/25/2015)... HOLLISTON, Mass. , Nov. 25, 2015 /PRNewswire/ ... ), a biotechnology company developing bioengineered organ implants for ... will present at the LD Micro "Main Event" ... p.m. PT. The presentation will be webcast live and ... will also be available at the conference for one-on-one ...
(Date:11/25/2015)... ... November 25, 2015 , ... A long-standing partnership between the ... has been formalized with the signing of a Memorandum of Understanding. , AMA ... Capt. Karl Minter and Capt. Albert Glenn Tuesday, November 24, 2015, at AMA ...
(Date:11/25/2015)... (PRWEB) , ... November 25, 2015 , ... ... company uBiome, were featured on AngelList early in their initial angel funding process. ... AngelList syndicate for individuals looking to make early stage investments in the microbiome ...
Breaking Biology Technology: