Navigation Links
SF State biologists tag 'zombees' to track their flight
Date:9/6/2012

SAN FRANCISCO, Sept. 6, 2012 -- After last year's accidental discovery of "zombie"-like bees infected with a fly parasite, SF State researchers are conducting an elaborate experiment to learn more about the plight of the honey bees.

The scientists are tagging infected bees with tiny radio trackers, and monitoring the bees' movements in and out of a specially designed hive on top of the Hensill Hall biology building on campus. At the same time, they are monitoring hives on campus and on the roof of the San Francisco Chronicle's offices for further signs of the mysterious parasite and encouraging the public to participate through a new website ZomBeeWatch.org.

After being parasitized by the Apocephalus borealis fly, the bees abandon their hives and congregate near outside lights, moving in increasingly erratic circles on the ground before dying. The phenomenon was first discovered on campus by SF Professor of Biology John Hafernik, and reported last year in the research journal PLoS ONE, with former SF State master's student Andrew Core as lead author.

It's unclear yet how big of a threat the emerging fly parasite might be to the health of honey bee colonies, or if the parasite is linked to the colony collapse disorder that has devastated honey bee colonies in the United States, say Hafernik and colleagues.

To learn more about how the parasitic fly affects the bees' behavior, the scientists have built a system to track the movements of infected bees in and out of a hive. Each bee has a set of tiny radio frequency trackers -- each no bigger than a fleck of glitter -- attached to the top of its thorax. The bees leave and return to the hive through a small tube outfitted with dual laser readers that interact with the individual trackers.

The readers, which operate in a similar way to barcode scanners in a grocery checkout lane, create "virtually a 24-hour record of bees going in and out of the hive to forage," said Christopher Quock, an SF State master's biology student working on the hive's design together with bee keeper Robert MacKimmie.

Knowing exactly when bees leave--and whether they come back--is important for understanding how and when the parasites might cause the bees to abandon their hives, Quock explained. The original study found bees disoriented and dying at night, for instance, but the researchers aren't sure whether the infected bees only leave their hives to fly in the dark.

Quock's challenge has been to create a hive design where the bees "still have room to do their normal behavior." To get a unique identification and time stamp for each bee, he said, the insects have to pass one at a time under the laser readers through a narrow passage.

Quock, who began work on the bees as an undergraduate, has also been perfecting a method for studying infected bees in the lab. "Hopefully in the long run, this information might help us understand how much of a health concern these flies are for the bees, and if they truly do impede their foraging behavior," he said. "We also want to know whether there are any weak links in the chain of interactions between these flies and honey bees that we could exploit to control the spread of this parasite."

In addition to understanding how parasitism affects foraging behavior, Andrew Zink, SF State assistant professor of biology and Quock's advisor, said that the tracking project might eventually shed light on how the infected bees behave inside the hive. "We are also interested in knowing if parasitized foragers are the recipients of aggression by other workers, for example if they're expelled from the hive, or if parasitized foragers behave in ways that disrupt hive productivity."

If enough of the parasitized bees do the wrong "waggle" dances to send unparasitized foragers off in the wrong directions for food, or distract unparasitized foragers through antagonistic interactions, the hive's productivity could falter. Combined with the premature deaths of the infected foragers, Zink said, these within-hive effects "would represent a two-fold cost of fly parasitism for the hive."

The radio tracking study "could give us a hint" as to why parasitism alters bee behavior, Hafernik said. "It might just be that having a maggot in the back is uncomfortable."

The PLoS ONE study was heavily covered in the media and some unusual outlets. "Our study got picked up on zombie discussion boards, and zombie blogs," Hafernik recalled. "And for the most part the discussion was all very respectful and zombie lovers were interested."

The researchers hope to capitalize on the interest in the bees with a citizen science project called ZomBee Watch. The project encourages bee watchers to help map the parasite's spread by uploading photos of possible parasitized bees to a central website.


'/>"/>

Contact: Nan Broadbent
nbroadbe@sfsu.edu
415-338-7108
San Francisco State University
Source:Eurekalert  

Related biology news :

1. Epigenetic causes of prostate cancer
2. Science research led in Gulf of Mexico by Penn State biologist to be honored with US award
3. NC State leads national effort to evaluate fresh water sustainability in the southern US
4. American Meteorological Society releases revised climate change statement
5. Iowa State, Ames Lab researchers study the structure of drug resistance in tuberculosis
6. Antimicrobials from personal care products found in statewide survey of Minnesotas rivers and lakes
7. UF scientists find state record 87 eggs in largest python from Everglades
8. NSF releases report detailing nationwide and state-by-state R&D activities
9. Iowa State, Ames Lab researchers invent new tool to study single biological molecules
10. Wayne State researchers working to improve genetic analysis, disorder detection
11. State of Michigan adopts NIHs PRB progesterone therapy to combat infant mortality
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
SF State biologists tag 'zombees' to track their flight
(Date:6/15/2016)... York , June 15, 2016 ... new market report titled "Gesture Recognition Market by Application ... Forecast, 2016 - 2024". According to the report, the  ... 11.60 billion in 2015 and is estimated to ... USD 48.56 billion by 2024.  Increasing ...
(Date:6/3/2016)... 2016 Das DOTM ... Nepal hat ein 44 Millionen ... Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an ... und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale ... teilgenommen, aber Decatur wurde als konformste und ...
(Date:6/1/2016)... , June 1, 2016 Favorable ... Election Administration and Criminal Identification to Boost Global Biometrics ... recently released TechSci Research report, " Global Biometrics Market ... Competition Forecast and Opportunities, 2011 - 2021", the global ... by 2021, on account of growing security concerns across ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ("Biorem" or ... its major shareholders, Clean Technology Fund I, LP and ... based venture capital funds which together hold ... a fully diluted, as converted basis), that they have ... entire equity holdings in Biorem to TUS Holdings Co. ...
(Date:6/27/2016)... , ... June 27, 2016 , ... Parallel 6 ... trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module which ... with the physician and clinical trial team. , Using the CONSULT module, patients and ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... the funding of a Sponsored Research Agreement with ... tumor cells (CTCs) from cancer patients.  The funding ... CTC levels correlate with clinical outcomes in cancer ... data will then be employed to support the ...
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
Breaking Biology Technology: