Navigation Links
SAR11, oceans' most abundant organism, has ability to create methane

CORVALLIS, Ore. The oxygen-rich surface waters of the world's major oceans are supersaturated with methane a powerful greenhouse gas that is roughly 20 times more potent than carbon dioxide yet little is known about the source of this methane.

Now a new study by researchers at Oregon State University demonstrates the ability of some strains of the oceans' most abundant organism SAR11 to generate methane as a byproduct of breaking down a compound for its phosphorus.

Results of the study are being published this week in Nature Communications. It was funded by the National Science Foundation and the Gordon and Betty Moore Foundation.

"Anaerobic methane biogenesis was the only process known to produce methane in the oceans and that requires environments with very low levels of oxygen," said Angelicque "Angel" White, a researcher in OSU's College of Earth, Ocean, and Atmospheric Sciences and co-author on the study. "In the vast central gyres of the Pacific and Atlantic oceans, the surface waters have lots of oxygen from mixing with the atmosphere and yet they also have lots of methane, hence the term 'marine methane paradox.'

"We've now learned that certain strains of SAR11, when starved for phosphorus, turn to a compound known as methylphosphonic acid," White added. "The organisms produce enzymes that can break this compound apart, freeing up phosphorus that can be used for growth and leaving methane behind."

The discovery is an important piece of the puzzle in understanding the Earth's methane cycle, scientists say. It builds on a series of studies conducted by researchers from several institutions around the world over the past several years.

Previous research has shown that adding methylphosphonic acid, or MPn, to seawater produces methane, though no one knew exactly how. Then a laboratory study led by David Karl of the University of Hawaii and OSU's White found that an organism called Trichodesmium could break down MPn and thus it could be a potential source of phosphorus, which is a critical mineral essential to every living organism.

However, Trichodesmium are rare in the marine environment and unlikely to be the only source for vast methane deposits in the surface waters.

So White turned to Steve Giovannoni, a distinguished professor of microbiology at OSU, who not only maintains the world's largest bank of SAR11 strains, but who also discovered and identified SAR11 in 1990. In a series of experiments, White, Giovannoni, and graduate students Paul Carini and Emily Campbell tested the capacity of different SAR11 strains to consume MPn and cleave off methane.

"We found that some did produce a methane byproduct, and some didn't," White said. "Just as some humans have a different capacity for breaking down compounds for nutrition than others, so do these organisms. The bottom line is that this shows phosphate-starved bacterioplankton have the capability of producing methane and doing so in oxygen-rich waters."

SAR11 is the smallest free-living cell known and also has the smallest genome, or genetic structure, of any independent cell. Yet it dominates life in the oceans, thrives where most other cells would die, and plays a huge role in the cycling of carbon on Earth.

These bacteria are so dominant that their combined weight exceeds that of all the fish in the world's oceans, scientists say. In a marine environment that's low in nutrients and other resources, they are able to survive and replicate in extraordinary numbers a milliliter of seawater, for instance, might contain 500,000 of these cells.

"The ocean is a competitive environment and these bacteria apparently won the race," said Giovannoni, a professor in OSU's College of Science. "Our analysis of the SAR11 genome indicates that they became the dominant life form in the oceans largely by being the simplest."

"Their ability to cleave off methane is an interesting finding because it provides a partial explanation for why methane is so abundant in the high-oxygen waters of the mid-ocean regions," Giovannoni added. "Just how much they contribute to the methane budget still needs to be determined."

Since the discovery of SAR11, scientists have been interested in their role in the Earth's carbon budget. Now their possible implication in methane creation gives the study of these bacteria new importance.


Contact: Angel White
Oregon State University

Related biology news :

1. Oceans acidifying faster today than in past 300 million years
2. Wind pushes plastics deeper into oceans, driving trash estimates up
3. JRC and US NOAA enhance cooperation on climate, weather, oceans and coasts
4. Stanford researchers help predict the oceans of the future with a mini-lab
5. Think pink! Success of pink bacteria in oceans of the world
6. Carbon dioxide from water pollution, as well as air pollution, may adversely impact oceans
7. Toxic oceans may have delayed spread of complex life
8. Black carbon flowing from soil to oceans
9. Fast-sinking jellyfish could boost the oceans uptake of carbon dioxide
10. Acidifying oceans could spell trouble for squid
11. Study of oceans past raises worries about their future
Post Your Comments:
(Date:10/26/2015)... and LAS VEGAS , ... Nok Labs , an innovator in modern authentication and ... today announced the launch of its latest version of ... platform enabling organizations to use standards-based authentication that supports ... Nok S3 Authentication Suite is ideal for organizations deploying ...
(Date:10/23/2015)... California , October 23, 2015 ... (SMI) announce a mobile plug and play integration of ... real-world tasks SensoMotoric Instruments (SMI) present ... wearable solutions for eye tracking and physiological data registration. ... SMI Eye Tracking Glasses 2w and physiological ...
(Date:10/22/2015)... 2015 About fingerprint biometrics ... individual with the database to identify and verify an ... loop. Pattern-based algorithms are used to match an individual,s ... was introduced in 1986, which is being used by ... criminal. Technavio,s analysts forecast the global fingerprint ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model Aeronautics (AMA), ... MultiGP, also known as Multirotor Grand Prix, to represent the First–Person View (FPV) racing ... AMA members have embraced this type of racing and several new model aviation pilots ...
(Date:11/24/2015)... QUEBEC CITY , Nov. 24, 2015 /PRNewswire/ ... (the "Company") announced today that the remaining 11,000 ... Common Share Purchase Warrants (the "Series B Warrants") ... agreement were exercised on November 23, 2015, which ... Common Shares.  After giving effect to the issuance ...
(Date:11/24/2015)... ... November 24, 2015 , ... Creation Technologies would like ... to Deloitte's 2015 Technology Fast 500 list of the fastest growing companies in ... Class II medical device that speeds up orthodontic tooth movement by as much ...
(Date:11/24/2015)... INCLINE VILLAGE, Nev. , Nov. 24, 2015  PDL ... John P. McLaughlin , the company,s president and chief ... Piper Jaffray Healthcare Conference next week in New ... and will occur on Tuesday, December 1, 2015 at 9:30 ... and Presentations." Please connect to the website at least 15 ...
Breaking Biology Technology: