Navigation Links
Rutgers-Camden researcher examines how the brain perceives shades of gray
Date:11/15/2011

CAMDEN How the brain perceives color is one of its more impressive tricks. It is able to keep a stable perception of an object's color as lighting conditions change.

Sarah Allred, an assistant professor of psychology at RutgersCamden, has teamed up with psychologists from the University of Pennsylvania on groundbreaking research that provides new insight into how this works.

Allred conducted the research with Alan L. Gilchrist, a professor of psychology at RutgersNewark, and professor David H. Brainard and post-doctoral fellow Ana Radonjic, both of the University of Pennsylvania. Their research will be published in the journal Current Biology.

"Although we recognize easily the colors of objects in many different environments, this is a difficult problem for the brain," Allred says. "For example, consider just the gray scale that goes from black to white. A white piece of paper in bright sunlight reflects thousands of times more light to the eye than a white piece of paper indoors, but both pieces of paper look white. How does the brain do this?"

The process of seeing an object begins when light reflected off that object hits the light-sensitive structures in the eye. The perception of an object's lightness (in terms of color shade) depends on the object's reflectance. Objects that appear lighter reflect a larger percentage of light than those that appear darker.

Allred says the brain processes perceptual differences between black and white objects even when illumination of the object changes. If the brain did not do this, it would fail to distinguish color shade in different light.

In general, white objects reflect about 90 percent of the light that hits them, and black objects reflect about three percent, a ratio of 30-to-1, she explains.

"However, if you look at the intensities of light that enter the eye from a typical scene, like a field of lilies, that ratio is much higher, usually somewhere between 10,000-to-1 and a million-to-1," Allred says.

This happens because in addition to having objects with different reflectance, real "scenes" also have different levels of illumination. One example might be a shadowed area under a tree. Allred and her research colleagues wanted to determine how the brain maps a large range of light intensity onto a much smaller reflectance range.

One long-time hypothesis is that the brain segments scenes into different regions of illumination and then uses ratio coding to decide what looks white.

To test if this hypothesis was true, the researchers conducted an experiment where participants viewed images that had a very large range of light intensities. Participants were asked to look at a 5x5 checkerboard composed of grayscale squares with random intensities spanning the 10,000-to-1 range. They were asked to report what shades of gray a target square looked like by selecting a match from a standardized gray scale.

If the visual system relied only on ratios to determine surface lightness, then the ratio of checkerboard intensities the participants reported should have had the same ratio as that of the black and white samples on the reflectance scale, about 100-to-1.

Instead, the researchers found that this ratio could be as much as 50 times higher, more than 5,000-to-1.

"This research is important because we have falsified the ratio hypothesis, which is currently the most widely invoked explanation of how we perceive lightness," Allred says. "We also were able to reject several similar models of lightness. We were able to do this because we measured lightness in such high-range and relatively complex images."

She continues, "In addition, even though we used behavioral rather than physiological measures, our results provide insight into the neural mechanisms that must underlie the behavioral results."

A Philadelphia resident, Allred received her undergraduate degree from Brigham Young University and her graduate degree from the University of Washington. She is also conducting research on color memory and perception through a five-year grant from the National Science Foundation.


'/>"/>

Contact: Ed Moorhouse
ejmoor@camden.rutgers.edu
856-225-6759
Rutgers University
Source:Eurekalert

Related biology news :

1. Rutgers-Camden professor engineers E. coli to produce biodiesel
2. NSF grant supports Rutgers-Camden program for science majors
3. Rutgers-Camden developing enzyme function database
4. Evolution and climate change research advances at Rutgers-Camden
5. USC researchers discover key aspect of process that activates breast cancer genes
6. Researchers confirm new cancer-causing virus
7. Researchers get $7.5M grant to combat nerve agents
8. Researchers uncover why the body cant defend against tuberculosis
9. Results triple researchers projections with use of adult stem cells for heart failure
10. Researchers develop more effective way to discover and test potential cancer drugs
11. Researchers closer to the super bug puzzle
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
(Date:4/15/2016)... Research and Markets has announced ... 2016-2020,"  report to their offering.  , ... global gait biometrics market is expected to grow ... 2016-2020. Gait analysis generates multiple variables ... to compute factors that are not or cannot ...
(Date:3/29/2016)... March 29, 2016 LegacyXChange, Inc. ... "LEGX" and SelectaDNA/CSI Protect are pleased to announce our ... in a variety of writing instruments, ensuring athletes signatures ... created collectibles from athletes on LegacyXChange will be assured ... the DNA. Bill Bollander , CEO ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... WA (PRWEB) , ... June 23, 2016 , ... ... announces the release of its second eBook, “Clinical Trials Patient Recruitment and Retention ... recruitment and retention in this eBook by providing practical tips, tools, and strategies ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... June 23, 2016 A person commits a crime, ... scene to track the criminal down. An outbreak ... and Drug Administration (FDA) uses DNA evidence to track down ... Sound far-fetched? It,s not. The FDA has increasingly used ... investigations of foodborne illnesses. Put as simply as possible, whole ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. ... test has received AOAC Research Institute approval 061601. , “This is another AOAC-RI ... stated Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate ...
Breaking Biology Technology: