Navigation Links
Rogue blood cells may contribute to post-surgery organ damage
Date:6/26/2011

A study from scientists at Queen Mary, University of London, sheds new light on why people who experience serious trauma or go through major surgery, can suffer organ damage in parts of the body which are seemingly unconnected to the injury.

The study, published today in Nature Immunology*, examines the way certain white blood cells, called neutrophils move out of blood vessels to defend damaged organs against injury or infection.

This is normally a one-way journey but researchers were surprised to find that, in some cases, this process can go into reverse, with rogue super-activated neutrophils, re-entering the blood stream and causing damage to other parts of the body.

The researchers used a cutting edge imaging technique which allowed them to watch the movement of neutrophils, in three dimensions and in real time in mice. As they expected the neutrophils moved out of blood vessels and into tissues to tackle injury or infection and they showed that his process was being controlled by a protein on the surface of the blood vessels called JAM-C.

However, when they temporarily blocked the blood vessels, mimicking the trauma experienced by patients undergoing major surgery, JAM-C was lost from the blood vessels. When this happened the neutrophils seemed to loose their way. Cells that had already exited blood vessels returned to the blood stream and damaged other parts of the body. In particular, the researchers found that these confused but highly activated neutrophils lodged into blood vessels in the lungs where they appeared to cause inflammation and damage to lungs.

Further research on the JAM-C molecule and the properties of these rogue neutrophils could lead to the development of drugs aimed at reducing life threatening complications following major surgeries such as inflammation of the lungs.

Professor Sussan Nourshargh who led the study said: "This is a really exciting piece of research as we have been able to watch how white blood cells move out of blood vessels to enter parts of the body that need their help. But with the advanced imaging technique that we have developed we could also for the first time see neutrophils move back into blood vessels following trauma. The neutrophils that behave this way are very different from normal blood neutrophils in that they are highly activated and fully capable of causing damage to other organs."

"Neutrophils are usually our first line of defence against infection but they have the ability to cause many diseases. As we learn more about the complex processes that protect us against infections we also find ways of tackling inflammatory diseases where white blood cells are inappropriately switched on."


'/>"/>

Contact: Kerry Noble
k.noble@qmul.ac.uk
44-020-788-27943
Queen Mary, University of London
Source:Eurekalert

Related biology news :

1. Blocking rogue gene could stop the spread of most cancers
2. How do we kill rogue cells?
3. iGEM team helps prevent rogue use of synthetic biology
4. Oregons Rogue River Basin to face climate-change hurdles
5. Scientists breakthrough attracts new funding for high blood pressure research
6. Device could improve harvest of stem cells from umbilical cord blood
7. Hematologist discovers, names the Toms River blood mutation in N.J. family
8. Scripps Research team sheds new light on how blood clots form
9. Blood clotting and bowel cancer risk
10. Wayne State to study the role of vitamin D in African-Americans with high blood pressure
11. Team solves decades-old molecular mystery linked to blood clotting
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2016)... PROVO and SANDY, Utah ... Ontario (NSO), which operates the highest sample volume laboratory ... and Tute Genomics and UNIConnect, leaders in clinical sequencing ... announced the launch of a project to establish the ... panel. NSO has been contracted by ...
(Date:3/15/2016)... 15, 2016 Yissum Research Development Company ... company of the Hebrew University, announced today the formation ... technology of various human biological indicators. Neteera Technologies has ... from private investors. ... detection of electromagnetic emissions from sweat ducts, enables reliable ...
(Date:3/10/2016)... PUNE, India , March 10, 2016 ... to a new market research report "Identity and Access ... SSO, & Audit, Compliance, and Governance), by Organization Size, ... Forecast to 2020", published by MarketsandMarkets, The market is ... to USD 12.78 Billion by 2020, at a Compound ...
Breaking Biology News(10 mins):
(Date:4/27/2016)... Columbia , April 27, 2016 ... "NanoStruck") (CSE: NSK) (OTCPink: NSKQB) ( Frankfurt ... Anschluss an ihre Pressemitteilung vom 13. August 2015 ... hat, ihre Finanzen um zusätzliche 200.000.000 Einheiten auf ... Kanadische Dollar zu bringen. Davon wurden 157.900.000 Einheiten ...
(Date:4/27/2016)... ... April 27, 2016 , ... PathSensors, Inc., a leading ... Dr. Lamka will assist PathSensors in expanding the use of the company’s CANARY® ... CANARY® test platform for the detection of harmful pathogens, including a number of ...
(Date:4/27/2016)... , April 27, 2016 MedDay, ... disorders, today announces the appointment of Catherine Moukheibir as Chairman ... MedDay,s previous Chairman, Jean Jacques Garaud , who contributed ... change is effective immediately. Catherine started her career ... and London .  She held ...
(Date:4/26/2016)... ... 26, 2016 , ... The European Patent Office (EPO) today announced ... finalists for the European Inventor Award 2016 in the category "Non-European countries." The winners ... a ceremony in Lisbon on June 9th. , The human capacity to walk with ...
Breaking Biology Technology: