Navigation Links
Rockefeller scientists first to reconstitute the DNA 'replication fork'
Date:7/9/2014

When a cell divides, it must first make a copy of its DNA, a fundamental step in the life cycle of cells that occurs billions of times a day in the human body. While scientists have had an idea of the molecular tools that cells use to replicate DNAthe enzymes that unzip the double-stranded DNA and create "daughter" copiesthey did not have a clear picture of how the process works.

Now, researchers at Rockefeller University have built the first model system to decipher what goes on at the "replication fork"the point where DNA is split down the middle in order to create two exact copies. The findings are specific to eukaryotic cells, the defining feature of which is that the DNA is contained within a nucleus. All multicellular life forms, including humans, are eukaryotes. The researchers' findings, which may have profound implications for the study of cell division and human disease, appeared July 6 in the journal Nature Structural and Molecular Biology.

"We were able to purify and reconstitute the central components that propel the eukaryotic replication fork, which for the first time enables us to study the process and its regulation by the cell in fine detail," says the paper's senior author Michael O'Donnell, head of the Laboratory of DNA Replication at Rockefeller University. "What is more exciting, I believe, is that this opens up replication-fork biology to biochemical study by many labs, providing a new tool to unravel some pressing questions in a number of fields of study, including epigenetics and DNA repair." O'Donnell is Anthony and Judith Evnin Professor at Rockefeller and a Howard Hughes Medical Institute investigator.

According to O'Donnell, the team's techniques may allow researchers to reconstruct at the molecular level biochemical events that are known to occur but were difficult or impossible to study in detail. For example, scientists know that epigenetic informationinheritable information that is not encoded by the DNA sequence, but instead lies in modifications to proteins associated with the DNAis passed along to the daughter cells after DNA replication. Yet exactly how that occurs remains a mystery. Another unknown is what happens when the replication fork encounters an area of damaged DNA as it travels down the length of DNA.

"Diseases, such as cancer, often arise from DNA damage or defects in episomal inheritance, so these findings could have direct relevance to these fields," O'Donnell says. "There are plenty of hypotheses about the mechanics of DNA replication, but until now the process could not be studied using a defined system with pure proteins."

The replication fork is assembled as a complex of numerous proteins, one of which is an 11-subunit collective called CMG that unwinds and separates the DNA into two individual strands. The emerging replication fork looks much like a zipper opening, with CMG in the role of a zipper slider and the individual strand appearing like the two rows of teeth of the open zipper.

Each of these strands then becomes the templates for daughter copies. The act of synthesizing a new complementary strand to match the templates is performed by two different polymerase enzymes, which match each complementary subunit of DNA (the nucleotide "letters" that make up the genetic code) to the chain, resulting in a new double-stranded DNA molecule. These enzymes are known as polymerase epsilon (Pol epsilon) and polymerase delta (Pol delta), and the O'Donnell laboratory sought to examine how they attach to DNA to perform their task.

One of the chief features of the replications fork is its essential asymmetry. Because the two strands of double-stranded DNA are complementary, they fit together head to tail (in biochemical terms, the 5' end to the 3' end), so that the head of one strand is attached to the tail of the other. New DNA can only be synthesized in one direction (5' to 3'). This leads to a traffic problem of sorts, where the two daughter strands of DNA are created at slightly different paces, resulting in a leading strand (the work of Pol epsilon) and a lagging strand (Pol δ) being synthesized in opposite directions.

In order to study the replication fork, O'Donnell and his laboratory needed to recreate the process in a simple model. In a test tube, they brought together the essential enzymes with a set of nucleotides (DNA building blocks) and a linear molecule of duplex DNA.

Pol epsilon, they found, does not attach very well to the DNA on its own. It requires the presence of the CMG complex to attach securely. Even in an excess of Pol delta, CMG chose Pol epsilon without fail. Pol delta, however, binds very strongly to another accessory proteinthe PCNA clampa ring shaped protein that encircles DNA. Only when the PCNA clamp is on the lagging strand does Pol delta strongly bind to PCNA. Even when the researchers added a 20 to 1 excess of Pol epsilon, PCNA only would work with Pol delta on a lagging strand model DNA.

"As a research tool, our model could allow scientists to better understand what occurs in DNA replication, and what goes wrong in disease states," O'Donnell says.

To create his replication fork model, O'Donnell used enzymes from yeast. Like human cells, yeast cells are eukaryotic, meaning a membrane encloses their nucleus. Prokaryotic cells, like bacteria, evolved a separate (although similar) method for replicating DNA. The eukaryotic machinery, from single-celled amoeba to humans, are remarkably conserved through evolution, which allows for high confidence that the replication fork model also represents what occurs in human cells.

"For much of my career, I studied the replication fork in prokaryotes, thinking that perhaps what I learned could be applied to create new types of antibiotics that would stop the replication process in its tracks," O'Donnell says. "Now I study the replication fork in eukaryotes in the hopes that what we find could be applied to fix the process and help it along in the case of human disease."


'/>"/>

Contact: Franklin Hoke
fhoke@rockefeller.edu
212-327-8998
Rockefeller University
Source:Eurekalert

Related biology news :

1. Resilient cities focus of new Sandia, Rockefeller Foundation pact to help 100 communities
2. Rockefeller Universitys Pearl Meister Greengard Prize to be awarded to RNA researcher Joan Steitz
3. Scripps Florida scientists uncover new compounds that could affect circadian rhythm
4. US scientists dont publish articles about potential role of innate variation in athletic performance
5. Scientists can now screen for stem cells that enhance corneal regrowth
6. Clemson scientists: Kudzu can release soil carbon, accelerate global warming
7. Scientists uncover the key to adaptation limits of ocean dwellers
8. Scientists chart a baby boom -- in southwestern Native-Americans from 500 to 1300 A.D.
9. Oil palm plantations threaten water quality, Stanford scientists say
10. A first: Scientists show bacteria can evolve a biological timer to survive antibiotics
11. Scientists study effects of warming on tropical rainforests
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a product ... and Onegini today announced a partnership to integrate ... solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... to provide their customers enhanced security to access ...
(Date:4/19/2016)... 20, 2016 The new GEZE ... compact web-based "all-in-one" system solution for all door components. ... or the door interface with integration authorization management system, ... systems. The minimal dimensions of the access control and ... building installations offer considerable freedom of design with regard ...
(Date:4/15/2016)... 15, 2016 Research and ... Biometrics Market 2016-2020,"  report to their offering.  , ... , ,The global gait biometrics market is expected ... the period 2016-2020. Gait analysis generates ... be used to compute factors that are not ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... ... innovative medical technologies, services and solutions to the healthcare market. The company's primary ... various distribution, manufacturing, sales and marketing strategies that are necessary to help companies ...
(Date:6/24/2016)... TOKYO , June 24, 2016  Regular discussions on ... to take place between the two entities said Poloz. ... in Ottawa , he pointed to the ... and the federal government. ... Poloz said, "Both institutions have common economic goals, why not ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... the release of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” ... and retention in this eBook by providing practical tips, tools, and strategies for ...
(Date:6/23/2016)... Md. , June 23, 2016 A person ... from the crime scene to track the criminal down. ... the U.S. Food and Drug Administration (FDA) uses DNA evidence ... Sound far-fetched? It,s not. The FDA ... sequencing to support investigations of foodborne illnesses. Put as simply ...
Breaking Biology Technology: