Navigation Links
River mystery solved

The pristine state of unpolluted waterways may be their downfall, according to research results published in a paper this week in the journal Geophysical Research Letters.

A species of freshwater algae that lives in streams and rivers, called Didymo for Didymosphenia geminata, is able to colonize and dominate the bottoms of some of the world's cleanest waterways--precisely because they are so clear.

Didymo does so with a little help from its friends--in this case, bacteria--which allow it to make use of nutrients like phosphorus.

Blooms of Didymo, also known as "rock snot," says scientist P.V. Sundareshwar of the South Dakota School of Mines and Technology, are made up of stalks that form thick mats on the beds of oligotrophic, or low-nutrient, streams and rivers. Sundareshwar is the paper's lead author.

"In recent decades, human activities have led to many uncommon environmental phenomena," he says. "Now we have Didymo."

The freshwater diatom has become notorious. Didymo has taken over low-nutrient rivers in North America and Europe. It has also invaded water bodies in the Southern Hemisphere, including those in New Zealand and Chile.

Because its blooms alter food webs and have the potential to impact fisheries, "Didymo presents a threat to the ecosystem and economic health of these watercourses," says Sundareshwar.

Algae blooms are usually linked with the input of nutrients that fuel the growth of microscopic aquatic plants. Didymo's ability to grow prolifically in waters where nutrients such as phosphorus are in short supply puzzled scientists.

Environmental managers tried to mitigate Didymo blooms and predict their spread. But how the diatoms sustained such high growth in oligotrophic systems was unknown.

In a study funded by the National Science Foundation (NSF) and the State of South Dakota Carbon Scientist fund, Sundareshwar and colleagues revealed that Didymo is able to concentrate phosphorus from the water.

The scientists conducted their research in Rapid Creek, an unpolluted mountain stream in western South Dakota where Didymo was first observed in 2002. The creek regularly has Didymo blooms, with 30 to 100 percent of the streambed covered with Didymo over an area up to ten kilometers (6 miles) long.

Didymo thrives in Rapid Creek through biogeochemical processes in biofilms in the mats. As Didymo mats form, new stalks develop at the surface and older stalks--which have already bound phosphorus--are displaced to the mats' inner regions.

Phosphorus is available to Didymo thanks to the activity of the bacteria that live inside these mats.

"This study solves the puzzle of how Didymo can produce such large blooms in low-nutrient rivers and streams," says Tim Kratz, program director in NSF's Division of Environmental Biology.

"It has uncovered the fascinating mechanism by which Didymo 'scrubs' phosphorus from a stream or river," says Kratz, "then creates a microenvironment that allows microbes to make this nutrient available for Didymo's growth."

The concentration of phosphorus on Didymo mats far exceeds the level expected based on the nutrient content of surface waters, says Sundareshwar.

"The ability of the mats to store phosphorus is tied to the availability of iron in the water."

Didymo cells adsorb, or condense on their surfaces, both iron and phosphorus. Then bacterial processes in the mat interact with iron to increase the biological availability of phosphorus.

The process results in abundant phosphorus for cell division, "and hence," says Sundareshwar, "a resolution to the paradox of Didymo blooms in oliogotrophic streams and rivers."

The result will help scientists and managers identify water bodies susceptible to Didymo blooms.

"It also has the potential to lead to discoveries that may stem this organism's prolific growth in rivers around the world," says Sundareshwar.

"This is how science is supposed to work--research conducted at one small creek in South Dakota can be translated to places across the globe."


Contact: Cheryl Dybas
National Science Foundation

Related biology news :

1. Foothill yellow-legged frog provides insight on river management
2. UC Riverside licenses leading South African company to market GEM avocados
3. Study probes sources of Mississippi River phosphorus
4. Fellowship to UC Riverside botanist encourages Hispanic students to take up research
5. UC Riverside biologist elected to American Academy of Arts and Sciences
6. New citrus variety released by UC Riverside is very sweet, juicy and low-seeded
7. UC Riverside entomologists propose pesticide-free method to increase egg production
8. Climate change and evolution of Cross River gorillas
9. Some populations of Fraser River salmon more likely to survive climate change: UBC study
10. UC Riverside researcher receives $9 million USDA grant to study potato and tomato disease
11. UC Riverside geneticists to study how plants adapt to a changing environment
Post Your Comments:
Related Image:
River mystery solved
(Date:7/20/2017)... 2017 Delta (NYSE: DAL ) customers now can ... at Reagan Washington National Airport (DCA). ... Delta launches biometrics to board aircraft at Reagan ... Delta,s biometric boarding pass experience that ... now integrated into the boarding process to allow eligible Delta SkyMiles Members ...
(Date:6/23/2017)... and ITHACA, N.Y. , June 23, ... University, a leader in dairy research, today announced a ... to help reduce the chances that the global milk ... of this dairy project, Cornell University has become the ... the Food Supply Chain, a food safety initiative that ...
(Date:5/23/2017)... , May 23, 2017  Hunova, the first robotic gym for the ... been officially launched in Genoa, Italy . The first ... and the USA . The technology was developed ... market by the IIT spin-off Movendo Technology thanks to a 10 million ... News Release, please click: ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... AMRI, a global contract research, ... improve patient outcomes and quality of life, will now be offering its impurity ... to new regulatory requirements for all new drug products, including the finalization of ...
(Date:10/11/2017)... Alto, CA, USA (PRWEB) , ... October 11, 2017 , ... ... set to take place on 7th and 8th June 2018 in San Francisco, CA. ... policy influencers as well as several distinguished CEOs, board directors and government officials from ...
(Date:10/11/2017)... ... October 11, 2017 , ... A ... pregnancy rates in frozen and fresh in vitro fertilization (IVF) transfer ... age to IVF success. , After comparing the results from the fresh and ...
(Date:10/10/2017)... California (PRWEB) , ... October 10, 2017 , ... Dr. ... speaking at his local San Diego Rotary Club. The event entitled ... Diego, CA and had 300+ attendees. Dr. Harman, DVM, MPVM was joined by ...
Breaking Biology Technology: