Navigation Links
Rice yields researched to tackle food security issues
Date:6/21/2010

A pioneering project in the Philippines, which aims to develop a new, higher-yielding rice plant which could ease the threat of hunger for the poor, is being led by an academic at the University of Sheffield.

Currently, more than a billion people worldwide live on less than a dollar a day and nearly one billion live in hunger. Over the next 50 years, the population of the world will increase by about 50 per cent and water scarcity will grow. About half of the worlds population consumes rice as a staple cereal, so boosting its productivity is crucial to achieving long-term global food security.

The project, which is being led by Professor Paul Quick from the University's Department of Animal and Plant Sciences and coordinated by the International Rice Research Institute (IRRI), is hoping to considerably boost global rice production by using modern molecular tools to produce a more efficient and higher-yielding form of rice.

The work comes as the University of Sheffield launches a unique venture entitled Project Sunshine. The project aims to unite scientists in finding ways to harness the power of the sun and tackle one of the biggest challenges facing the world today: meeting the increasing food and energy needs of the worlds population in the context of an uncertain climate and global environment change.

The researchers are addressing this issue of food security by studying the mode of photosynthesis the process by which plants use solar energy to capture carbon dioxide and convert it into the carbohydrates required for growth used by rice. Unlike some plants, rice has a type of photosynthesis known as C3, in which the capture of carbon dioxide is relatively inefficient. Other plants, such as maize and sorghum, have evolved a much more efficient form of photosynthesis known as C4 and their crop yields are improved by more than 50 per cent.

Using a grant of US$11 million over three years from the Bill and Melinda Gates Foundation, the team are hoping to change the biochemistry and anatomy of rice leaves to increase grain yield by introducing a C4 mode of photosynthesis. Currently, the project is in the gene discovery stage, which involves randomly mutating sorghum and rice to try and determine which genes regulate and determine C4.

Research will shortly be moving into phase two, which will involve engineering rice to allow the team to test the gene function. In addition, for the first time, natural variations in rice are being studied using IRRI's world gene bank of rice to look for natural variation. In total, the project is expected to span over a 15 year period.

As a result of research into the re-engineering of photosynthesis in rice being conducted by this group, rice plants that can produce 50 per cent more grain using less fertilizer and less water will be brought a step closer to reality. The project will also act as a model project for changing any other C3 crops, (e.g. wheat and barley), into C4.

Professor Paul Quick from the University of Sheffield's Department of Animal and Plant Sciences is heading up the team, which includes a team of 70 researchers, as well as 20 international collaborators world-wide. He will be working with Professor Richard Leegood, also from the Universitys Department of Animal and Plant Sciences and Professor Peter Horton, FRS, who has collaborated with the IRRI on improving rice photosynthesis for over 15 years.

Professor Paul Quick, from the Department of Animal and Plant Sciences at the University of Sheffield, said: "C4 rice is a completely novel idea. Nowhere else in the world and never before have scientists been able to supercharge a C3 plant and convert its photosynthetic mechanism into C4. A C4 photosynthetic engine in rice would increase the efficiency of solar energy conversion by 50 per cent and nearly double its water use efficiency, as well as improving its fertilizer-use efficiency. This innovation will improve the lives of hundreds of millions of poor people and contribute to protecting the natural environment."

Professor Peter Horton, from the University's Department of Biology and Biotechnology, said: "Increasing the efficiency of photosynthesis is probably essential if we are to deliver the required increase in crop yield needed for global food security. This is high risk/high reward research, and it is tremendous to see the University playing a leading role. This is exactly the kind of exciting, ground-breaking research which we are fostering within Project Sunshine."


'/>"/>

Contact: Shemina Davis
shemina.davis@sheffield.ac.uk
01-142-225-339
University of Sheffield
Source:Eurekalert  

Related biology news :

1. New research into the deep ocean floor yields promising results for microbiologists
2. Stretching molecules yields new understanding of electricity
3. Chinese-German collaboration yields new species of Large Blue butterfly
4. Psychedelic maize may help increase crop and biofuel yields
5. Technique yields potential biological substitute for dental implants
6. Neanderthal genome yields insights into human evolution and evidence of interbreeding
7. Calculating crop and ethanol yields and irrigation needs in 4 easy steps
8. Genetic key discovered to dramatically increase yields and improve taste of hybrid tomato plants
9. A-maize-ing discovery could lead to higher corn yields for food, feed and fuel
10. HSBC Climate Partnership yields initial research findings
11. Plant hormone increases cotton yields in drought conditions
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Rice yields researched to tackle food security issues
(Date:5/24/2016)... 24, 2016 Ampronix facilitates superior patient care by providing unparalleled technology to ... display is the latest premium product recently added to the range of products distributed ... ... ... Imaging- LCD Medical Display- Ampronix News ...
(Date:5/12/2016)... -- WearablesResearch.com , a brand of Troubadour Research ... the Q1 wave of its quarterly wearables survey. A ... to a program where they would receive discounts for ... "We were surprised to see that so ... , CEO of Troubadour Research, "primarily because there are ...
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 /PRNewswire/ ... product subsidiary of Infosys (NYSE: INFY ), and ... global partnership that will provide end customers with ... banking and payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ... area for financial services, but it also plays a fundamental ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016  Liquid Biotech USA ... of a Sponsored Research Agreement with The University ... (CTCs) from cancer patients.  The funding will be ... correlate with clinical outcomes in cancer patients undergoing ... then be employed to support the design of ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of ... the Cary 5000 and the 6000i models are higher end machines that use the ... of the spectrophotometer’s light beam from the bottom of the cuvette holder. , ...
(Date:6/23/2016)...   Boston Biomedical , an industry leader ... target cancer stemness pathways, announced that its lead ... Designation from the U.S. Food and Drug Administration ... gastroesophageal junction (GEJ) cancer. Napabucasin is an orally ... stemness pathways by targeting STAT3, and is currently ...
(Date:6/23/2016)... ... 23, 2016 , ... Charm Sciences, Inc. is pleased to ... AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of the ... Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably ...
Breaking Biology Technology: