Navigation Links
Rice scientists divide and conquer
Date:12/28/2009

Half a protein is better than none, and in this case, it's way better than a whole one. A Rice University lab has discovered that dividing a particular fluorescent protein and using it as a tag is handy for analyzing the workings of live cells, particularly in the way they employ iron-sulfur clusters.

Iron and sulfur in just the right amounts are critical to good health. They're in the food people eat and vitamins they take every day, but having too much or too little in the cells can cause serious problems.

Iron-sulfur clusters are molecules with as few as four atoms. They are manufactured and regulated by proteins in living cells, and their role is a fairly recent field of study for researchers interested in Friedreich's ataxia, sideroblastic anemia and myopathy, diseases caused by defects in proteins. But until now, there's been no way to look at such "metalloclusters" in living cells.

Jonathan Silberg, an assistant professor of biochemistry and cell biology at Rice, has been studying the mysteries of these molecules for years. He has come up with a way to see what they're doing in living cells. Silberg and his team published a paper in the December edition of Chemistry & Biology that details a new technique for imaging clusters that involves attaching them, through an intermediary, to fluorescent fragments of protein.

That intermediary is a human protein called GRX2, a glutaredoxin that helps cells deal with oxidative damage on other proteins. Its activity can be switched off in test tubes by association with an iron-sulfur cluster. The team had already proved that GRX2 would still bond with iron-sulfur clusters even when tagged with a green fluorescent protein; this makes it useful for in vitro studies, but the fluorescence wasn't strong enough to be seen in living cells.

However, attaching fragments of a yellow fluorescent protein called Venus to monomers (single molecules) of GRX2 worked quite well. When injected into living cells, the tagged monomers find and use iron-sulfur clusters as a kind of bridge and bond with each other. That brings the Venus fragments close enough to each other to light up sufficiently to be seen through a microscope.

"If we need an iron-sulfur cluster to get fluorescence, then we have a reporter for those clusters in living cells," Silberg said. The custom proteins can be used to analyze cells for signs of diseases involving iron-sulfur irregularities.

"That's why I'm really excited about this. This is a screen that will allow fundamental biology that nobody can do right now," he said. "And it has high potential for helping us find real treatments for disease."

Silberg said iron and sulfur were present in Earth's primordial stew even before there was oxygen. "The atmosphere was anaerobic when life evolved, and iron and sulfur were plentiful. These metalloclusters are easy to build, so you can imagine that if the chemistry's simple and the molecules are around, proteins will evolve to do a lot of chemistry using iron-sulfur clusters.

"Then photosynthetic organisms evolved and started to produce oxygen. Iron is very easily oxidized, so aerobic organisms evolved all this machinery to protect it, to repair it. That's the machinery we're studying."

Measuring clusters in live cells is a breakthrough of great interest to the American Heart Association, which partly funded the study. "They gave us money to build more tools," Silberg said. "They're interested in Friedreich's ataxia (which can lead to heart disease), but they also want to know if we can develop ways to image other proteins with metalloclusters."

In this study, he said, "We actually answered a fundamental biological question -- that glutaredoxins associate using metalloclusters in vivo. No one's ever showed that in living human cells."

Refining the tools has high priority in Silberg's lab now, but in the long term, he sees potential for the technology to study the roots of aging itself. Iron is toxic to the body if not managed properly, he said, and since oxidation appears to be central to aging, studies of the process tend to draw a lot of interest.

"Will people age faster because their iron-sulfur cluster assembly is different? To me, the answer is decades out, but it's a very interesting question. How will subtle differences in oxidative stress affect aging?

"It's getting more tantalizing now that there are direct links between defects in iron-sulfur cluster assembly and nuclear genome stability," he said. "It's no longer, 'Oh, mitochondrial oxidative stress is connected somehow to nuclear mutations.' There's evidence that iron-sulfur cluster assembly defects in the mitochondria can be that connection."


'/>"/>

Contact: David Ruth
druth@rice.edu
713-348-6327
Rice University
Source:Eurekalert

Related biology news :

1. UK scientists working to help cut ID theft
2. Scientists show that mitochondrial DNA variants are linked to risk factors for type 2 diabetes
3. Comet probes reveal evidence of origin of life, scientists claim
4. Scientists link fragile X tremor/ataxia syndrome to binding protein in RNA
5. Male elephants get photo IDs from scientists
6. Scientists retrace evolution with first atomic structure of an ancient protein
7. Muscle mass: Scientists identify novel mode of transcriptional regulation during myogenesis
8. Carnegie Mellon scientists develop nanogels that enable controlled delivery of carbohydrate drugs
9. Clemson scientists shed light on molecules in living cells
10. Scientists tackle mystery mountain illness
11. T. rex quicker than Becks, say scientists
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/13/2016)... ALBANY, New York , January 13, 2016 /PRNewswire/ ... Transparency Market Research has published a new market report ... Share, Growth, Trends, and Forecast, 2015 - 2023. According to ... mn in 2014 and is anticipated to reach US$1,625.8 ... from 2015 to 2023. In terms of volume, the ...
(Date:1/11/2016)... CHICAGO , Jan. 11, 2016  higi, ... via nearly 10,000 retail locations, web and mobile, ... than $40 million from existing investors. ... will be devoted to further innovate higi,s health ... app and web portal – including expanding services ...
(Date:1/7/2016)... , Jan. 7, 2016 This BCC Research ... for biometric technologies and devices, identifying newer markets and ... various types of biometric devices. Includes forecast from 2015 ... Identify newer markets and explore the expansion of the ... Examine each type of biometric technology, determine its current ...
Breaking Biology News(10 mins):
(Date:2/3/2016)... , ... February 03, 2016 , ... ... Linux and Unix visualization solutions today announced the addition of a powerful “Session ... users to see the current state of the remote Linux desktop or other ...
(Date:2/3/2016)... Calif. , Feb. 3, 2016  Today, Symphony ... of AlphaImpactRx , a leading provider of primary ... companies to IMS Health , a global information ... complementary offerings, capabilities and technologies will be integrated into ... growing global primary market research capabilities. ...
(Date:2/3/2016)... NEW YORK. (PRWEB) , ... February 03, 2016 ... ... manufacturer of silicon (Si) and InGaAs chips and wafers, and InP epi wafers ... ranging from silicon detectors–including photodiodes, photo transistors, and Avalanche photodiodes–to Si and ...
(Date:2/2/2016)... YORK , Feb. 2, 2016 ... clusters of commensal, symbiotic and pathogenic microorganisms that ... human body. The human microbiome is involved in ... healthy life. Majority of the microorganisms benefit humans ... otherwise not possess. These include metabolism of complex ...
Breaking Biology Technology: