Navigation Links
Rice scientists ID new catalyst for cleanup of nitrites

HOUSTON -- (Nov. 25, 2013) -- Chemical engineers at Rice University have found a new catalyst that can rapidly break down nitrites, a common and harmful contaminant in drinking water that often results from overuse of agricultural fertilizers.

Nitrites and their more abundant cousins, nitrates, are inorganic compounds that are often found in both groundwater and surface water. The compounds are a health hazard, and the Environmental Protection Agency places strict limits on the amount of nitrates and nitrites in drinking water. While it's possible to remove nitrates and nitrites from water with filters and resins, the process can be prohibitively expensive.

"This is a big problem, particularly for agricultural communities, and there aren't really any good options for dealing with it," said Michael Wong, professor of chemical and biomolecular engineering at Rice and the lead researcher on the new study. "Our group has studied engineered gold and palladium nanocatalysts for several years. We've tested these against chlorinated solvents for almost a decade, and in looking for other potential uses for these we stumbled onto some studies about palladium catalysts being used to treat nitrates and nitrites; so we decided to do a comparison."

Catalysts are the matchmakers of the molecular world: They cause other compounds to react with one another, often by bringing them into close proximity, but the catalysts are not consumed by the reaction.

In a new paper in the journal Nanoscale, Wong's team showed that engineered nanoparticles of gold and palladium were several times more efficient at breaking down nitrites than any previously studied catalysts. The particles, which were invented at Wong's Catalysis and Nanomaterials Laboratory, consist of a solid gold core that's partially covered with palladium.

Over the past decade, Wong's team has found these gold-palladium composites have faster reaction times for breaking down chlorinated pollutants than do any other known catalysts. He said the same proved true for nitrites, for reasons that are still unknown.

"There's no chlorine in these compounds, so the chemistry is completely different," Wong said. "It's not yet clear how the gold and palladium work together to boost the reaction time in nitrites and why reaction efficiency spiked when the nanoparticles had about 80 percent palladium coverage. We have several hypotheses we are testing out now. "

He said that gold-palladium nanocatalysts with the optimal formulation were about 15 times more efficient at breaking down nitrites than were pure palladium nanocatalysts, and about 7 1/2 times more efficient than catalysts made of palladium and aluminum oxide.

Wong said he can envision using the gold-palladium catalysts in a small filtration unit that could be attached to a water tap, but only if the team finds a similarly efficient catalyst for breaking down nitrates, which are even more abundant pollutants than nitrites.

"Nitrites form wherever you have nitrates, which are really the root of the problem," Wong said. "We're actively studying a number of candidates for degrading nitrates now, and we have some positive leads."


Contact: Jade Boyd
Rice University

Related biology news :

1. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
2. Queens scientists seek vaccine for Pseudomonas infection
3. Scientists produce eye structures from human blood-derived stem cells
4. American Society of Plant Biologists honors early career women scientists
5. Brandeis scientists win prestigious prize for circadian rhythms research
6. Scientists discover new method of proton transfer
7. Salk scientists open new window into how cancers override cellular growth controls
8. - Now Featuring Bespoke Pages for China’s Life Scientists
9. Scientists win $2 million to study new pathway in development and maintenance of lymphoma
10. UGA scientists reveal genetic mutation depicted in van Goghs sunflower paintings
11. Genetic mutation depicted in van Goghs sunflower paintings revealed by scientists
Post Your Comments:
Related Image:
Rice scientists ID new catalyst for cleanup of nitrites
(Date:11/19/2015)... MOUNTAIN VIEW, Calif. , Nov. 19, 2015 /PRNewswire/ ... authentication market, Frost & Sullivan recognizes BIO-key with the ... Strategy Leadership. Each year, Frost & Sullivan presents this ... comprehensive product line catering to the needs of the ... which the product line meets and expands on customer ...
(Date:11/18/2015)... 2015 --> ... market report titled  Gesture Recognition Market - Global Industry ... 2021. According to the report, the global gesture recognition market was valued ... reach US$29.1 bn by 2021, at a CAGR of ... America dominated the global gesture recognition market ...
(Date:11/17/2015)... Nov. 17, 2015  Vigilant Solutions announces today that ... Board of Directors. --> ... retiring from the partnership at TPG Capital, one of ... over $140 Billion in revenue.  He founded and led ... the TPG companies, from 1997 to 2013.  In his ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... Germany , November 30, 2015 ... Vienna, Austria to be held December ... (ECNR) in Vienna, Austria to ... wholly owned subsidiary of Vycor Medical, Inc. ("Vycor") (OTCQB: VYCO), ... NovaVision Therapy Suite at the 3rd European Congress of ...
(Date:11/27/2015)... , Nov. 27, 2015 /PRNewswire/--  Mallinckrodt plc (NYSE: ... today that it has closed the sale of its ... Guerbet (GBT- NYSE Euronext) in a transaction valued at ... manufacturing facilities and a total of approximately 1,000 employees ... St. Louis area. This entire ...
(Date:11/25/2015)... , November 26, 2015 ... Biobanking Market 2016 - 2020 report analyzes that ... integrity and quality in long-term samples, minimizing manual ... cost-effectiveness. Automation minimizes manual errors such as mislabeling ... efficiency. Further, it plays a vital role in ...
(Date:11/25/2015)... 25, 2015  Neurocrine Biosciences, Inc. (Nasdaq: NBIX ... and CEO of Neurocrine Biosciences, will be presenting at ... New York . .   ... approximately 5 minutes prior to the presentation to download ... presentation will be available on the website approximately one ...
Breaking Biology Technology: