Navigation Links
Rewrite the textbooks: Transcription is bidirectional
Date:1/25/2009

Genes that contain instructions for making proteins make up less than 2% of the human genome. Yet, for unknown reasons, most of our genome is transcribed into RNA. The same is true for many other organisms that are easier to study than humans. Researchers in the groups of Lars Steinmetz at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and Wolfgang Huber at the European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have now unravelled how yeast generates its transcripts and have come a step closer to understanding their function. The study, published online in Nature, redefines the concept of promoters (the start sites of transcription) contradicting the established notion that they support transcription in one direction only. The results are also representative of transcription in humans.

Investigating all transcripts produced in a yeast cell, the scientists found that most regions of the yeast genome produce several transcripts starting at the same promoter. These transcripts are interleaved and overlapping on the DNA. In contrast to what was previously thought, the vast majority of promoters seem to initiate transcription in both directions.

Not all of the produced transcripts are stable, many are degraded rapidly making it difficult to observe what they do. While some of the RNA molecules might be 'transcriptional noise' without function, other transcripts control the expression of genes and production of proteins. The act of transcription itself is also likely to play an important role in regulation of gene expression. Transcribing one stretch of DNA might either help or in other cases interfere with the transcription of a gene close by. Moreover, transcripts without a current purpose can serve as 'raw material for evolution' and acquire new functions over time.

The results shed light on the complex organisation of the yeast genome and the insights gained extend to transcription in humans. A better understanding of transcription mechanisms could find application in new technologies to tune gene regulation in the future.


'/>"/>

Contact: Anna-Lynn Wegener
wegener@embl.org
49-622-138-7452
European Molecular Biology Laboratory
Source:Eurekalert

Related biology news :

1. Rosella research could rewrite ring theory
2. Smithsonian scientists find evidence that could rewrite Hawaiis botanical history
3. Primitive early relative of armadillos helps rewrite evolutionary family tree
4. CSHL scientists discover new way in which ubiquitin modifies transcriptional machinery
5. Early-stage gene transcription creates access to DNA
6. Stowers Institutes Shilatifard Lab identifies new role for factor critical to transcription
7. NIA uses Genomatix in stem cell research, suggests novel transcription factors for stemness
8. Research sheds light on the mechanics of gene transcription
9. Muscle mass: Scientists identify novel mode of transcriptional regulation during myogenesis
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... Research and Markets has announced the addition of the "Global ... ... at a CAGR of 30.37% during the period 2017-2021. ... based on an in-depth market analysis with inputs from industry experts. ... the coming years. The report also includes a discussion of the ...
(Date:4/6/2017)... 6, 2017 Forecasts by Product ... Readers, by End-Use (Transportation & Logistics, Government & Public ... & Fossil Generation Facility, Nuclear Power), Industrial, Retail, Business ... Are you looking for a definitive report on ... ...
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... anticipated to expand at a CAGR of 25.76% during ... diseases is the primary factor for the growth of ... report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global ... product, technology, application, and geography. The stem cell market ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... San Diego-based team building and cooking events company, ... today. The bold new look is part of a transformation to increase awareness, ... significant growth period. , It will also expand its service offering from its signature ...
(Date:10/10/2017)... SANTA CRUZ, Calif. , Oct. 10, 2017 /PRNewswire/ ... SBIR grant from the NIH to develop RealSeq®-SC (Single ... preparation kit for profiling small RNAs (including microRNAs) from ... Cell Analysis Program highlights the need to accelerate development ... "New techniques for ...
(Date:10/9/2017)... N.C. (PRWEB) , ... October 09, 2017 , ... At ... announced Dr. Christopher Stubbs, a professor in Harvard University’s Departments of Physics and Astronomy, ... Stubbs was a member of the winning team for the 2015 Breakthrough Prize in ...
(Date:10/7/2017)... 6, 2017  The 2017 Nobel Prize in ... Jacques Dubochet, Joachim Frank and ... cryo-electron microscopy (cryo-EM) have helped to broaden ... biology community. The winners worked with systems manufactured ... produce highly resolved, three-dimensional images of protein structures ...
Breaking Biology Technology: