Navigation Links
Reviving a foe of cancer
Date:4/25/2013

April 25, 2013, New York, NY and Oxford, UK Cancer cells are a problem for the body because they multiply recklessly, refuse to die and blithely metastasize to set up shop in places where they don't belong. One protein that keeps healthy cells from behaving this way is a tumor suppressor named p53. This protein stops potentially precancerous cells from dividing and induces suicide in those that are damaged beyond repair. Not surprisingly, p53's critical function is disrupted in most cancers.

In the April 25 issue of Cancer Cell, a research team, led by Xin Lu, PhD, Ludwig director and member at the University of Oxford and a team of scientists from both institutions, describes how p53 is silenced in advanced melanomas by a protein named iASPP, and applies that information to restore p53 function in such cells.

Lu's research team first identified iASPP as an inhibitor of p53 in 2003. In the current study, Lu and her colleagues show that a protein complex named cyclin B1/cdk1, which is expressed at high levels in the cytoplasm of advanced melanomas, induces a pair of precise chemical modifications on iASPP to activate the protein. When activated, iASPP is shuttled into the nucleus, binds to p53 and ultimately inhibits its ability to induce cell suicide. "This is the first time that such a mechanism of p53 inactivation has been described," says Lu.

Lu and her colleagues explored whether they could restore p53's function in advanced melanomas by scuttling iASPP activation. To do so, they treated melanoma cells with a panel of small molecules and identified JNJ-7706621 (JNJ) as the best inhibitor of cyclinB1/cdk1. Lu's study showed that p53 is inhibited by two proteins in melanoma cells, iASPP and MDM2. The activity of the latter protein is known to be blocked by a small molecule called Nutlin-3. When JNJ and the Nutlin-3 were combined, the full function of p53 was restored in metastatic melanoma cells. Further, such treatment significantly suppressed tumor growth in mice.

"These results demonstrate that functional p53 in melanoma is normally inhibited by two different factors, instead of one, as previously thought. They also provide a proof of principle that both of those factors need to be blocked if p53 is to be successfully reactivated in cancer cells," said Lu.

Since multiple signaling pathways drive the growth of tumor cells, Lu and her colleagues wondered if the restoration of p53 function could be used as a strategy to enhance existing cancer therapies that target parallel signaling pathways. To find out, they treated advanced melanomas with JNJ, Nutlin-3 and a chemotherapeutic drug used in the clinic today named vemurafenib. This drug specifically inhibits BRAFV600E, a mutated protein that drives cancer cell proliferation. With such treatment, advanced melanoma tumors in preclinical mouse models shrank by a full 75 percent after 28 days of treatment. This has notable implications for the treatment of cancers in which p53 is not mutated but is instead functionally silencedroughly half of all cancer cases.

Based on their results, Lu and her colleagues argue that the best strategy in such cases might be to use drug combinations that target multiple, parallel pathways involved in tumor development and maintenance. Such combinations of drugs that normally have short-term efficacy could achieve an additive, if not a long-term synergistic effect.


'/>"/>

Contact: Rachel Steinhardt
rsteinhardt@licr.org
212-450-1582
Ludwig Institute for Cancer Research
Source:Eurekalert

Related biology news :

1. OHSU teams with Intel to decode the root causes of cancer and other complex diseases
2. Particular DNA changes linked with prostate cancer development and lethality
3. Cold winters freezing out breast cancer treatment
4. Identified as responsible for breast and ovarian hereditary cancer 3 mutations at BRCA1 gene
5. Ben-Gurion U. and Fox Chase Cancer Center awarded NIH measles grant
6. Researchers abuzz over caffeine as cancer-cell killer
7. An important discovery in breast cancer by IRCM researchers
8. UCLA researchers find nanodiamonds could improve effectiveness of breast cancer treatment
9. Icy therapy spot treats cancer in the lung
10. IMPAKT -- Translational research breast cancer conference
11. LSUHSC research discovers new drug target for metastatic breast cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/14/2016)... , April 14, 2016 ... and Malware Detection, today announced the appointment of ... the new role. Goldwerger,s leadership appointment comes ... the heels of the deployment of its platform at ... behavioral biometric technology, which discerns unique cognitive and physiological ...
(Date:3/31/2016)... March 31, 2016  Genomics firm Nabsys has completed ... Barrett Bready , M.D., who returned to the ... original technical leadership team, including Chief Technology Officer, ... Development, Steve Nurnberg and Vice President of Software and ... company. Dr. Bready served as CEO of ...
(Date:3/22/2016)... India , March 22, 2016 /PRNewswire/ ... market research report "Electronic Sensors Market for Consumer ... Proximity, & Others), Application (Communication & IT, ... Geography - Global Forecast to 2022", published ... industry is expected to reach USD 26.76 ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ... advised by its major shareholders, Clean Technology Fund I, ... United States based venture capital funds which ... Biorem (on a fully diluted, as converted basis), that ... of their entire equity holdings in Biorem to TUS ...
(Date:6/27/2016)... ... 27, 2016 , ... Rolf K. Hoffmann, former senior vice ... University of North Carolina Kenan-Flagler Business School effective June 27. , ... with a focus on the school’s international efforts, leading classes and participating in ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of ... the Cary 5000 and the 6000i models are higher end machines that use the ... of the spectrophotometer’s light beam from the bottom of the cuvette holder. , ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
Breaking Biology Technology: