Navigation Links
Reversing Alzheimer's gene 'blockade' can restore memory, other cognitive functions
Date:2/29/2012

CAMBRIDGE, Mass. -- MIT neuroscientists have shown that an enzyme overproduced in the brains of Alzheimer's patients creates a blockade that shuts off genes necessary to form new memories. Furthermore, by inhibiting that enzyme in mice, the researchers were able to reverse Alzheimer's symptoms.

The finding suggests that drugs targeting the enzyme, known as HDAC2, could be a promising new approach to treating the disease, which affects 5.4 million Americans. The number of Alzheimer's victims worldwide is expected to double every 20 years, and President Barack Obama recently set a target date of 2025 to find an effective treatment.

Li-Huei Tsai, leader of the research team, says that HDAC2 inhibitors could help achieve that goal, though it would likely take at least 10 years to develop and test such drugs.

"I would really strongly advocate for an active program to develop agents that can contain HDAC2 activity," says Tsai, director of the Picower Institute for Learning and Memory at MIT. "The disease is so devastating and affects so many people, so I would encourage more people to think about this."

Tsai and her colleagues report the findings in the Feb. 29 online edition of Nature. Lead author of the paper is Johannes Grff, a postdoc at the Picower Institute.

Genome modification

Histone deacetylases (HDACs) are a family of 11 enzymes that control gene regulation by modifying histones proteins around which DNA is spooled, forming a structure called chromatin. When HDACs alter a histone through a process called deacetylation, chromatin becomes more tightly packaged, making genes in that region less likely to be expressed.

HDAC inhibitors can reverse this effect, opening up the DNA and allowing it to be transcribed.

In previous studies, Tsai had shown that HDAC2 is a key regulator of learning and memory. In the new study, her team discovered that inhibiting HDAC2 can reverse Alzheimer's symptoms in mice.

The researchers found that in mice with Alzheimer's symptoms, HDAC2 (but not other HDACs) is overly abundant in the hippocampus, where new memories are formed. HDAC2 was most commonly found clinging to genes involved in synaptic plasticity the brain's ability to strengthen and weaken connections between neurons in response to new information, which is critical to forming memories. In the affected mice, those genes also had much lower levels of acetylation and expression.

"It's not just one or two genes, it's a group of genes that work in concert to control different phases of memory formation," Tsai says. "With such a blockade, the brain really loses the ability to quickly respond to stimulation. You can imagine that this creates a huge problem in terms of learning and memory functions, and perhaps other cognitive functions."

The researchers then shut off HDAC2 in the hippocampi of mice with Alzheimer's symptoms, using a molecule called short hairpin RNA, which can be designed to bind to messenger RNA the molecule that carries genetic instructions from DNA to the rest of the cell.

With HDAC2 activity reduced, histone acetylation resumed, allowing genes required for synaptic plasticity and other learning and memory processes to be expressed. In treated mice, synaptic density was greatly increased and the mice regained normal cognitive function.

"This result really advocates for the notion that if there is any agent that can selectively down-regulate HDAC2, it's going to be very beneficial," Tsai says.

The researchers also analyzed postmortem brains of Alzheimer's patients and found elevated levels of HDAC2 in the hippocampus and entorhinal cortex, which play important roles in memory storage.

Reversing the blockade

The findings may explain why drugs that clear beta-amyloid proteins from the brains of Alzheimer's patients have offered only modest, if any, improvements in clinical trials, Tsai says.

Beta-amyloid proteins are known to clump in the brains of Alzheimer's patients, interfering with a type of cell receptor needed for synaptic plasticity. The new study shows that beta amyloid also stimulates production of HDAC2, possibly initiating the blockade of learning and memory genes.

"We think that once this epigenetic blockade of gene expression is in place, clearing beta amyloid may not be sufficient to restore the active configuration of the chromatin," Tsai says.

The appeal of HDAC2 inhibitors, Tsai says, is that they could conceivably reverse symptoms even after the blockade is well-established. However, much more drug development has to take place before such a compound could enter clinical trials. "It's really hard to predict," Tsai says. "Clinical trials would probably be five years down the line. And if everything goes well, to become an approved drug would probably take at least 10 years."

Some general HDAC inhibitors, not specific to HDAC2, have been tested in clinical trials as cancer drugs. However, to treat Alzheimer's, a more selective approach is needed, Tsai says. "You want something as selective as possible, and as safe as possible," she says.
'/>"/>

Contact: David Vaughn, Picower
dmvaughn@mit.edu
617-452-3342
Massachusetts Institute of Technology
Source:Eurekalert

Related biology news :

1. Hopes for reversing age-associated effects in MS patients
2. Reversing aging
3. New breathing therapy reduces panic and anxiety by reversing hyperventilation
4. Study reveals new possibility of reversing damage caused by MS
5. Preventing or reversing inflammation after heart attack, stroke may require 2-pronged approach
6. Reversing ecology reveals ancient environments
7. Neurimmune Therapeutics Announces Advancement of Alzheimers Program into Preclinical Development
8. Restored wetlands rarely equal condition of original wetlands
9. Using air pollution thresholds to protect and restore ecosystem health
10. New composite material may restore damaged soft tissue
11. Stem cells restore cognitive abilities impaired by brain cancer treatment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/3/2017)... 3, 2017  Data captured by IsoCode, ... detected a statistically significant association between the ... treatment and objective response of cancer patients ... predict whether cancer patients will respond to ... well as to improve both pre-infusion potency testing ...
(Date:3/29/2017)...  higi, the health IT company that operates the ... , today announced a Series B investment from ... The new investment and acquisition accelerates higi,s strategy to ... population health activities through the collection and workflow integration ... collects and secures data today on behalf of over ...
(Date:3/24/2017)... -- Research and Markets has announced the addition of ... - Industry Forecast to 2025" report to their offering. ... The Global Biometric Vehicle ... around 15.1% over the next decade to reach approximately $1,580 million ... estimates and forecasts for all the given segments on global as ...
Breaking Biology News(10 mins):
(Date:4/25/2017)... Oakland, California (PRWEB) , ... April 25, 2017 ... ... Artificial Intelligence (AI), leading supplier of Common Lisp (CL) development tools, and market ... 10.1 , which includes key performance enhancements now available within the most effective ...
(Date:4/25/2017)... SEATTLE, WA (PRWEB) , ... April 25, 2017 , ... ... technology division of Quorum, will be featured in multiple sessions at this week’s ... range from emerging trends to best practices in clinical research. , "We are excited ...
(Date:4/21/2017)... ... April 21, 2017 , ... The University of Connecticut, in ... to three startups through the UConn Innovation Fund. The $1.5 million UConn Innovation ... with UConn. , The UConn Innovation Fund provides investments of up to $100,000 ...
(Date:4/20/2017)... , ... April 20, 2017 , ... ... , this new webinar will explore challenging patient cases when screening for direct ... hospital, there may be a need for bridging parental anticoagulation especially for those ...
Breaking Biology Technology: