Navigation Links
Reversible 3-D cell culture gel invented
Date:9/28/2008

Singapore's Institute of Bioengineering and Nanotechnology (IBN), which celebrates its fifth anniversary this year, has invented a unique user-friendly gel that can liquefy on demand, with the potential to revolutionize three-dimensional (3D) cell culture for medical research.

As reported in Nature Nanotechnology (Y.S. Pek, A. C. A. Wan, A. Shekaran, L. Zhuo and J. Y. Ying, "A Thixotropic Nanocomposite Gel for Three-Dimensional Cell Culture"), IBN's novel gel media has the unique ability to liquefy when it is subjected to a moderate shear force and rapidly resolidifies into a gel within one minute upon removal of the force. This phenomenon of reverting between a gel and a liquid state is known as thixotropy.

IBN's thixotropic gel is synthesized from a nanocomposite of silica and polyethylene glycol (PEG) under room temperature, without special storage conditions. This novel material facilitates the safe and convenient culture of cells in 3D since cells can be easily added to the gel matrix without any chemical processes.

According to IBN Executive Director Jackie Y. Ying, Ph.D., "Cell culture is conventionally performed on a flat surface such as glass slides. It is an essential process in biological and medical research, and is widely used to process cells, synthesize biologics and develop treatments for a large variety of diseases.

"Cell culture within a 3D matrix would better mimic the actual conditions in the body as compared to the conventional 2D cell culture on flat surfaces. 3D cell culture also promises the development of better cell assays for drug screening," Dr. Ying added.

Another key feature of IBN's gel is the ease with which researchers can transfer the cultured cells from the matrix by pipetting the required amount from the liquefied gel.

Unlike conventional cell culture, trypsin is not required to detach the cultured cells from the solid media. As trypsin is an enzyme that is known to damage cells, especially in stem cell cultures, the long-term quality and viability of cells cultured using IBN's thixotropic gel would improve substantially without the exposure to this enzyme.

Researchers are also able to control the gel's stiffness, thus facilitating the differentiation of stem cells into specific cell types.

"Ways to control stem cell differentiation are important as stem cells can be differentiated into various cell types. Our gel can provide a novel method of studying stem cell differentiation, as well as an effective new means of introducing biological signals to cells to investigate their effect in 3D cultures," said Shona Pek, IBN Research Officer.

Andrew Wan, Ph.D., IBN Team Leader and Principal Research Scientist, added, "Another interesting property of the gel is its ability to support the extracellular matrix (ECM) secretions of cells. Gel stiffness is modulated by ECM secretions, and can be used to study ECM production by cells responding to drug treatments or disease conditions.

"The thixotropic gel may then provide new insights for basic research and drug development," Dr. Wan added.


'/>"/>

Contact: Cathy Yarbrough
sciencematter@yahoo.com
858-243-1814
Agency for Science, Technology and Research (A*STAR), Singapore
Source:Eurekalert

Related biology news :

1. Meeting the challenges of teaching agriculture
2. Plants in forest emit aspirin chemical to deal with stress; discovery may help agriculture
3. Study: Migrant laborers valuable to horticulture industry
4. New study points to agriculture in frog sexual abnormalities
5. Ancient sunflower fuels debate about agriculture in the Americas
6. Aquaculture concept leaves judges goggle eyed
7. Tomato pathogen genome may offer clues about bacterial evolution at dawn of agriculture
8. Stevens researchers provide oversight for three-year mariculture program in Egypt and Israel
9. Agriculture is changing the chemistry of the Mississippi River
10. MIT: Culture influences brain function
11. Agriculture experts meet in Beijing to examine impacts of food prices and climate change on farmers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... , April 28, 2016 Infosys ... (NYSE: INFY ), and Samsung SDS, a global ... that will provide end customers with a more secure, fast ...      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) , ... but it also plays a fundamental part in enabling and ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/15/2016)... , April 15, 2016 ... "Global Gait Biometrics Market 2016-2020,"  report to their ... ) , ,The global gait biometrics market ... 13.98% during the period 2016-2020. Gait ... which can be used to compute factors that ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... ... STACS DNA Inc., the sample tracking software company, today announced that Dr. ... STACS DNA as a Field Application Specialist. , “I am thrilled that Dr. ... STACS DNA. “In further expanding our capacity as a scientific integrator, Hays brings a ...
(Date:6/23/2016)... -- Andrew D Zelenetz , ... Published recently in Oncology & ... Andrew D Zelenetz , discusses the fact ... placing an increasing burden on healthcare systems worldwide, ... the patents on many biologics expiring, interest in ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... new line of intelligent tools designed, tuned and optimized exclusively for Okuma CNC ... in Chicago. The result of a collaboration among several companies with expertise in ...
(Date:6/22/2016)... DUBLIN , June 22, 2016 Research ... and Global Markets" report to their offering. ... $39.4 billion in 2014 from $29.3 billion in 2013. The market ... (CAGR) of 13.8% from 2015 to 2020, increasing from $50.6 billion ... and projected product forecasts during the forecast period (2015 to 2020) ...
Breaking Biology Technology: