Navigation Links
Rethinking the genetic theory of inheritance
Date:1/18/2009

Embargoed Until January 18, 2009 at 18:00 Greenwich Mean Time / 13:00 Eastern Standard Time (TORONTO): Scientists at the Centre for Addiction and Mental Health (CAMH) have detected evidence that DNA may not be the only carrier of heritable information; a secondary molecular mechanism called epigenetics may also account for some inherited traits and diseases. These findings challenge the fundamental principles of genetics and inheritance, and potentially provide a new insight into the primary causes of human diseases.

Your mother's eyes, your father's height, your predisposition to disease-- these are traits inherited from your parents. Traditionally, 'heritability' is estimated by comparing monozygotic (genetically identical) twins to dizygotic (genetically different) twins. A trait or disease is called heritable if monozygotic twins are more similar to each other than dizygotic twins. In molecular terms, heritability has traditionally been attributed to variations in the DNA sequence.

CAMH's Dr. Art Petronis, head of the Krembil Family Epigenetics Laboratory, and his team conducted a comprehensive epigenetic analysis of 100 sets of monozygotic and dizygotic twins in the first study of its kind. Said Dr. Petronis, "We investigated molecules that attach to DNA and regulate various gene activities. These DNA modifications are called epigenetic factors."

The CAMH study showed that epigenetic factors acting independently from DNA were more similar in monozygotic twins than dizygotic twins. This finding suggests that there is a secondary molecular mechanism of heredity. The epigenetic heritability may help explain currently unclear issues in human disease, such as the presence of a disease in only one monozygotic twin, the different susceptibility of males (e.g. to autism) and females (e.g. to lupus), significant fluctuations in the course of a disease (e.g. bipolar disorder, inflammatory bowel disease, multiple sclerosis), among numerous others.

"Traditionally, it has been assumed that only the DNA sequence can account for the capability of normal traits and diseases to be inherited," says Dr. Petronis. "Over the last several decades, there has been an enormous effort to identify specific DNA sequence changes predisposing people to psychiatric, neurodegenerative, malignant, metabolic, and autoimmune diseases, but with only moderate success. Our findings represent a new way to look for the molecular cause of disease, and eventually may lead to improved diagnostics and treatment."

by comparing monozygotic (genetically identical) twins to dizygotic (genetically different) twins. A trait or disease is called heritable if monozygotic twins are more similar to each other than dizygotic twins. In molecular terms, heritability has traditionally been attributed to variations in the DNA sequence.

CAMH's Dr. Art Petronis, head of the Krembil Family Epigenetics Laboratory, and his team conducted a comprehensive epigenetic analysis of 100 sets of monozygotic and dizygotic twins in the first study of its kind. Said Dr. Petronis, "We investigated molecules that attach to DNA and regulate various gene activities. These DNA modifications are called epigenetic factors."

The CAMH study showed that epigenetic factors acting independently from DNA were more similar in monozygotic twins than dizygotic twins. This finding suggests that there is a secondary molecular mechanism of heredity. The epigenetic heritability may help explain currently unclear issues in human disease, such as the presence of a disease in only one monozygotic twin, the different susceptibility of males (e.g. to autism) and females (e.g. to lupus), significant fluctuations in the course of a disease (e.g. bipolar disorder, inflammatory bowel disease, multiple sclerosis), among numerous others.

"Traditionally, it has been assumed that only the DNA sequence can account for the capability of normal traits and diseases to be inherited," says Dr. Petronis. "Over the last several decades, there has been an enormous effort to identify specific DNA sequence changes predisposing people to psychiatric, neurodegenerative, malignant, metabolic, and autoimmune diseases, but with only moderate success. Our findings represent a new way to look for the molecular cause of disease, and eventually may lead to improved diagnostics and treatment."


'/>"/>

Contact: Michael Torres
michael_torres@camh.net
416-595-6015
Centre for Addiction and Mental Health
Source:Eurekalert

Related biology news :

1. Rethinking who should be considered essential during a pandemic flu outbreak
2. Biologist enhances use of bioinformatic tools and achieves precision in genetic annotation
3. MUHC and McGill scientists explain genetic disease first discovered in Quebec 24 years ago
4. New drug holds out promise of normal diet for sufferers of devastating PKU genetic disease
5. Growth of new brain cells requires epigenetic switch
6. Studies examine genetic determinants of ADHD
7. Genetic mutation causes familial susceptibility for degenerative brain disease
8. New genetic markers for ulcerative colitis identified, researchers report in Nature Genetics
9. Genetic variation may lead to early cardiovascular disease
10. Scientists make strides toward defining genetic signature of Alzheimers disease
11. Safe new therapy for genetic heart disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... According to a new market research report "Consumer IAM Market by Solution ... Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast to 2022", ... 14.30 Billion in 2017 to USD 31.75 Billion by 2022, at a ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... 2017 Research and Markets has announced the ... to their offering. ... eye tracking market to grow at a CAGR of 30.37% during ... Market 2017-2021, has been prepared based on an in-depth market analysis ... and its growth prospects over the coming years. The report also ...
(Date:4/11/2017)... MELBOURNE, Florida , April 11, 2017 ... "Company"), a security technology company, announces the appointment of independent ... John Bendheim to its Board of Directors, furthering the ... ... behalf of NXT-ID, we look forward to their guidance and ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... launched Rosalind™, the first-ever genomics analysis platform specifically designed for life science ... in honor of pioneering researcher Rosalind Franklin, who made a major contribution ...
(Date:10/11/2017)... CA, USA (PRWEB) , ... October 11, 2017 , ... ... to take place on 7th and 8th June 2018 in San Francisco, CA. The ... influencers as well as several distinguished CEOs, board directors and government officials from around ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions are the main ... people each year. Especially those living in larger cities are affected by air pollution ... of the most pollution-affected countries globally - decided to take action. , “I knew ...
(Date:10/10/2017)... , ... October 10, 2017 ... ... cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing ... HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s ...
Breaking Biology Technology: