Navigation Links
Researchers use nanoscale 'patches' to sensitize targeted cell receptors
Date:11/25/2013

Researchers from North Carolina State University and Duke University have developed nanoscale "patches" that can be used to sensitize targeted cell receptors, making them more responsive to signals that control cell activity. The finding holds promise for promoting healing and facilitating tissue engineering research.

The research takes advantage of the fact that cells in a living organism can communicate via physical contact. Specifically, when targeted receptors on the surface of a cell are triggered, the cell receives instructions to alter its behavior in some way. For example, the instructions may cause a stem cell to differentiate into a bone cell or a cartilage cell.

These receptors respond to specific ligands, or target molecules. And those ligands have to be present in certain concentrations in order to trigger the receptors. If there aren't enough target ligands, the receptors won't respond.

Now researchers have developed nanoscale patches that are embedded with tiny protein fragments called peptides. These peptides bond to a specific cell receptor, making it more sensitive to its target ligand meaning that it takes fewer ligand molecules to trigger the receptor and its resulting behavior modification.

"This study shows that our concept can work, and there are a host of potential applications," says Dr. Thom LaBean, an associate professor of materials science at NC State and senior author of a paper describing the work. "For example, if we identify the relevant peptides, we could create patches that sensitize cells to promote cartilage growth on one side of the patch and bone growth on the other side. This could be used to expedite healing or to enable tissue engineering of biomedical implants."

"What's important about this is that it allows us to be extremely precise in controlling cell behavior and gene expression," says Ronnie Pedersen, a Ph.D. student at Duke University and lead author of the paper. "By controlling which peptides are on the patch, we can influence the cell's activity. And by manipulating the placement of the patch, we can control where that activity takes place."

The patch itself is made of DNA that researchers have programmed to self-assemble into flexible, two-dimensional sheets. The sheets themselves incorporate molecules called biotin and streptavidin which serve to hold and organize the peptides that are used to sensitize cell receptors.

"These peptides can bind with cell receptors and sensitize them, without blocking the interaction between the receptors and their target ligands," Pedersen says. "That's what makes this approach work."


'/>"/>

Contact: Matt Shipman
matt_shipman@ncsu.edu
919-515-6386
North Carolina State University
Source:Eurekalert

Related biology news :

1. 2 Cleveland Clinic researchers honored for contribution to science
2. Researchers describe 1 mechanism that favors rejection in transplantation of porcine cartilage in humans
3. UCLA, Emory researchers find a chemical signature for fast form of Parkinsons
4. Researchers map brain areas vital to understanding language
5. Researchers gain fuller picture of cell protein reactions
6. Scripps oceanography researchers engineer breakthrough for biofuel production
7. USF researchers show invasive sparrows immune cells sharpen as they spread
8. Researchers use CT and 3-D printers to recreate dinosaur fossils
9. Natural compound mitigates effects of methamphetamine abuse, University of Missouri researchers find
10. Researchers classify urban residential desert landscapes
11. Researchers test effects of LEDs on leaf lettuce
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... LOS ANGELES , March 30, 2017  On ... Hack the Genome hackathon at ... This exciting two-day competition will focus on developing health ... experience. Hack the Genome is ... has been tremendous. The world,s largest companies in the ...
(Date:3/28/2017)... 28, 2017 The report "Video ... Monitors, Servers, Storage Devices), Software (Video Analytics, VMS), and ... Global Forecast to 2022", published by MarketsandMarkets, the market ... is projected to reach USD 75.64 Billion by 2022, ... The base year considered for the study is 2016 ...
(Date:3/23/2017)... The report "Gesture Recognition and Touchless Sensing Market by Technology (Touch-based and ... 2022", published by MarketsandMarkets, the market is expected to be worth USD 18.98 ... Continue Reading ... ...      ...
Breaking Biology News(10 mins):
(Date:8/16/2017)... , ... August 16, 2017 , ... ... microbe delivery system, announced it has secured $2M in funding from an impressive ... Angels, Carmen Innovations, and SVG Thrive Fund. With this investment, 3Bar is broadening ...
(Date:8/15/2017)... ... ... Kapstone Medical is proud to announce that it has reached ... inventors develop and safeguard their latest innovations. The company has grown from a ... clients in the United States and around the world. , Company Founder and ...
(Date:8/15/2017)... NY (PRWEB) , ... August 15, 2017 , ... ... first time on Immuno-Oncology 360° (IO360°) programming through a series of upcoming panels and ... held February 7-9, 2018, at The Roosevelt Hotel in New York City. , “With ...
(Date:8/14/2017)... ... August 14, 2017 , ... The Conference Forum has confirmed the ... place on September 6, 2017 at the Marriott Copley Place in Boston, MA. , ... Informatics, and Regulatory Strategy, Pfizer Innovative Research Lab, Pfizer, who leads 19 industry speakers ...
Breaking Biology Technology: