Navigation Links
Researchers unlock the potential for exploring kidney regeneration
Date:2/1/2011

Boston, MA - It is estimated that up to 10 percent of the U.S. population may have some form of renal disease, with 450,000 patients with end stage renal disease (ESRD) requiring hemodialysis. Researchers at Brigham and Women's Hospital, Massachusetts General Hospital and the University of Pittsburgh have identified a cell in zebrafish that can be transplanted from one fish to another to regenerate nephrons, providing the potential to improve kidney function. These findings are published in the February 3 edition of Nature.

Currently, the five-year survival rate for patients on dialysis is 33 percent, worse than the survival rate for many forms of cancer. This epidemic of renal failure is projected to grow as obesity, poor nutrition and lack of exercise increase the incidence of diabetes and hypertension. There is also evidence that intra-uterine growth retardation and low birth weight/prematurity reduce the number of nephrons in each kidney thereby increasing the risk of hypertension and renal failure when these premature infants become adults. The cost of treating end stage renal disease is currently 32 billion dollars annually and is likely to double in the next decade.

One of the reasons renal failure is so common, is that humans are unable to generate any new nephrons, the basic filtration unit of the kidney, after the 36th week of gestation. In contrast, many non-mammalian vertebrates continue to generate nephrons throughout their lives and can generate new nephrons following renal injury. Understanding how non-mammalian vertebrates like zebrafish, carry out this remarkable regenerative process and why mammals have lost this ability is a fundamental biologic question. We believe that answering this question might provide new ways to repair damaged human kidneys and dramatically extend and improve the lives of hundreds of thousands of patients with chronic renal failure.

In a collaborative effort including two groups that are part of the Harvard Stem Cell Institute, the laboratory of Dr. Alan Davidson, at the Center for Regenerative Medicine at the Massachusetts General Hospital and the laboratory of Dr. Robert Handin, in the Hematology Division in the Department of Medicine at the Brigham and Woman's Hospital, together with Dr. Neil Hukriede's team at the University of Pittsburgh, have identified and characterized, for the first time, a progenitor cell in adult zebrafish kidneys that can be transplanted from one fish to another and generate new nephrons. Now that this cell has been identified it may be possible to better understand how to increase its number and capacity to generate nephrons.

Lead author, Dr. Alan Davidson, said "We hope to eventually be able to cross species barriers and understand why similar cells, present in mouse and human kidneys during embryonic life, disappear around the time of birth". The groups plan to continue studies on zebrafish and apply their data to mouse models and eventually humans.


'/>"/>

Contact: Holly Brown-Ayers
hbrown-ayers@partners.org
617-534-1603
Brigham and Women's Hospital
Source:Eurekalert

Related biology news :

1. Researchers bust bat rabies stereotype
2. Salk researchers discover that stem cell marker regulates synapse formation
3. Cold cases gone hot: Montreal researchers solve decades-old medical mysteries using genetics
4. Researchers identify biomarkers of poor outcomes in preemies
5. Researchers register new species using DNA-based description
6. Nearly 10 million euros ($13.6 million) in ERC grants for 6 Technische Universitaet Muenchen researchers
7. Climate change threatens many tree species, say Hebrew U. researchers
8. Researchers find smoking gun of worlds biggest extinction
9. 2 bacterial enzymes confer resistanceto common herbicide, say MU researchers
10. Go figure: Math model may help researchers with stem cell, cancer therapies
11. Researchers discover giant crayfish species right under their noses
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... 2017 KEY FINDINGS The global ... a CAGR of 25.76% during the forecast period of ... factor for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is ... geography. The stem cell market of the product is ...
(Date:3/30/2017)... March 30, 2017  On April 6-7, 2017, Sequencing.com ... Genome hackathon at Microsoft,s headquarters in ... will focus on developing health and wellness apps that ... Hack the Genome is the first hackathon for ... world,s largest companies in the genomics, tech and health ...
(Date:3/29/2017)... 2017  higi, the health IT company that operates ... America , today announced a Series B investment ... EveryMove. The new investment and acquisition accelerates higi,s strategy ... transform population health activities through the collection and workflow ... higi collects and secures data today on behalf of ...
Breaking Biology News(10 mins):
(Date:7/20/2017)... , ... July 20, 2017 , ... Corporate Directors Forum ... its 27th annual Director of the Year Awards. , The awards will be presented ... This annual event celebrates directors who have made significantly positive contributions in the ...
(Date:7/18/2017)... ... July 18, 2017 , ... Genedata, a leading ... science and technology company, has implemented Genedata Biologics ™ to scale-up their ... Oncology, Immunology, and Neurodegenerative Diseases. , The need to systematically evaluate large panels ...
(Date:7/18/2017)... ... July 18, 2017 , ... Recently recognized by ... ) announces the migration of its flagship cloud-based product Planet Life Cycle – ... enterprise work management system that merges strategic and financial planning with execution. The ...
(Date:7/17/2017)... ... July 17, 2017 , ... OHAUS ... announced the launch of its new line of Heavy-Duty Orbital Shakers today. , ... analog and digital) for laboratory applications. These shakers are ideal for load ...
Breaking Biology Technology: