Navigation Links
Researchers show some cells in pancreas can spontaneously change into insulin-producing cells
Date:4/5/2010

NEW YORK, April 5, 2010 Alpha cells in the pancreas, which do not produce insulin, can convert into insulin-producing beta cells, advancing the prospect of regenerating beta cells as a cure for type 1 diabetes. The findings come from a study at the University of Geneva, co-funded by the Juvenile Diabetes Research Foundation, that is published today in the online edition of the scientific journal Nature.

The researchers, led by Dr. Pedro L. Herrera, demonstrated that beta cells will spontaneously regenerate after near-total beta cell destruction in mice and the majority of the regenerated beta cells are derived from alpha cells that had been reprogrammed, or converted, into beta cells. Using a unique model of diabetes in mice, in which nearly all of the beta cells are rapidly destroyed, the researchers found that if the mice were maintained on insulin therapy, beta cells were slowly and spontaneously restored, eventually eliminating the need for insulin replacement. Alpha cells normally reside alongside beta cells in the pancreas and secrete a hormone called glucagon, which works opposite to insulin to regulate the levels of sugar in the blood. Alpha cells are not attacked by the autoimmune processes that destroy beta cells and causes type 1 diabetes.

Type 1 diabetes is a chronic, autoimmune disease that affects children, adolescents and adults, in which the immune system attacks the beta cells in the pancreas that produce insulin, a hormone that enables people to convert food into energy. People with type 1 diabetes are dependent on insulin treatment for the rest of their life.

Dr. Herrera's results are the first to show that beta cell reprogramming can occur spontaneously, without genetic alterations. Previous efforts to reprogram non-beta cells into beta cells relied on genetic manipulations processes that can not be easily translated into therapies.

According to Dr. Andrew Rakeman, JDRF Program Manager in Beta Cell Therapies, the breakthrough in Dr. Herrera's work is the demonstration that alpha- to-beta-cell reprogramming can be a natural, spontaneous process., "If we can understand the signals that are triggering this conversion, it will open a whole new potential strategy for regenerating beta cells in people with type 1 diabetes," he said. "It appears that the body can restore beta cell function either through reprogramming alpha cells to become beta cells or, as previously shown by others, by increasing growth of existing beta cells. This path may be particularly useful in individuals who have had the disease for a long time and have no, or very few, remaining beta cells."

Role of Removing Beta Cells

Dr. Herrera's team genetically engineered the animals to be susceptible to a toxin that would destroy only their beta cells. When the mice were exposed to the toxin, the beta cells were rapidly and efficiently destroyed greater than 99% just 15 days after treatment. Then, to track the source of newly regenerated beta cells, Dr. Herrera's team used another genetic manipulation to permanently label mature alpha cells and all their descendents with a fluorescent protein. This "genetic lineage tracing" approach allowed the scientists to track the fate of the alpha cells and their progeny; the presence of fluorescently labeled beta cells in the recovered animals gave conclusive evidence that alpha cells had reprogrammed into beta cells.

The Geneva researchers pointed out that the critical factor in sparking the alpha-to- beta-cell reprogramming was removing (or ablating) nearly all the original insulin-producing cells in the mice. In mice where the loss of beta cells was more modest, the researchers either found no evidence of beta cell regeneration (when only half the cells were destroyed) or less alpha cell reprogramming (when less than 95% of cells were destroyed).

"The amount of beta-cell destruction thus appears to determine whether regeneration occurs. Moreover, it influences the degree of cell plasticity and regenerative resources of the pancreas in adult organisms," said Dr. Herrera.

Regeneration Research

In type 1 diabetes, the immune system attacks beta cells, stopping a person's pancreas from producing insulin, the hormone that enables people to get energy from sugar. JDRF has been at the forefront of diabetes research looking to develop therapeutics to drive the regeneration of insulin-producing cells within a person's body (as an alternative to transplanting insulin-producing cells from other sources). Beta cell regeneration involves triggering the body to grow its own new insulin producing cells, either by copying existing ones some are usually still active, even in people who have had diabetes for decades or causing the pancreas to create new ones.

This study is another step forward for JDRF's research focus on Regeneration as a potential pathway to restore insulin production and normal blood sugar in people with type 1 diabetes. JDRF has become a leader in this new and exciting research field, funding a wide range of research projects, including studies like Dr. Herrera's, and an innovative diabetes drug discovery and development partnership with the Genomics Institute of the Novartis Foundation (GNF), focused on regeneration approaches.

In addition to regenerating or replacing insulin producing cells, a cure for type 1 diabetes will also require stopping the autoimmune attack that causes diabetes, and reestablishing excellent glucose control.


'/>"/>

Contact: Joana Casas
mcasas@jdrf.org
212-479-7560
Juvenile Diabetes Research Foundation International
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/9/2016)... , June 9, 2016  Perkotek an innovation leader in attendance control systems ... seamlessly log work hours, for employers to make sure the right employees are actually ... http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
(Date:6/3/2016)... LONDON , June 3, 2016 /PRNewswire/ ... Transport Management) von Nepal ... ,Angebot und Lieferung hochsicherer geprägter Kennzeichen, einschließlich ... weltweit führend in der Produktion und Implementierung ... an der Ausschreibung im Januar teilgenommen, aber ...
(Date:6/2/2016)... 2016 Perimeter Surveillance & Detection ... Physical Infrastructure, Support & Other Service  The ... offers comprehensive analysis of the global Border Security ... revenues of $17.98 billion in 2016. Now: ... leader in software and hardware technologies for advanced video ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced ... this eBook by providing practical tips, tools, and strategies for clinical researchers. , ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is pleased ... received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of ... Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform ...
Breaking Biology Technology: