Navigation Links
Researchers show how Alzheimer's plaques lead to loss of nitric oxide in brain

PITTSBURGH, Jan. 10 A researcher at the University of Pittsburgh School of Medicine, in collaboration with scientists from the National Institutes of Health (NIH), has discovered that the deadly plaques of Alzheimer's disease interact with certain cellular proteins to inhibit normal signals that maintain blood flow to the brain. Their findings, which could lead to new approaches to treat the dementia, were recently published in Public Library of Science One.

Levels of nitric oxide (NO) a signaling molecule that helps regulate blood flow, immune and neurological processes are known to be low in the brains of people who have Alzheimer's disease, but the reason for that hasn't been clear, said study co-author Jeffrey S. Isenberg, M.D., M.P.H., associate professor, Division of Pulmonary, Allergy, and Critical Care Medicine, Pitt School of Medicine.

"Our research sheds light on how that loss of NO might happen, and reveals biochemical pathways that drug discoverers might be able to exploit to find new medicines for Alzheimer's," he said. "There is evidence that suggests enhancing NO levels can protect neurons from degenerating and dying."

The researchers, led by first author Thomas Miller, Ph.D., and senior author David D. Roberts, Ph.D., both of the Laboratory of Pathology in NIH's National Cancer Institute (NCI), found in mouse and human cell experiments that amyloid-beta, the main component of the plaques that accumulate on brain cells in Alzheimer's, binds to a cell surface receptor called CD36, which causes decreased activity of the enzyme soluble guanylate cyclase to reduce NO signaling. But that inhibitory effect required the presence of and interaction with CD47, another cell surface protein, indicating that additional steps in the pathway remain to be identified.

"It's possible that an agent that could block either CD36 or CD47 could slow the progress of neuronal degeneration in Alzheimer's by protecting the production of NO in the brain," Dr. Isenberg said. "Importantly, we have already indentified therapeutic agents that can interrupt the inhibitory signal induced by these interactions to maximize NO production, signaling and sensitivity."

He and his colleagues currently are studying such blockers in a variety of disease models.

Co-authors of the paper include Hubert B. Shih and Yichen Wang, both of NCI. The research was funded by NCI and the Howard Hughes Medical Institute.


Contact: Anita Srikameswaran
University of Pittsburgh Schools of the Health Sciences

Related biology news :

1. Mayo researchers describe measles viral protein movement
2. Increasing diversity of future life science researchers
3. Biofuel grasslands better for birds than ethanol staple corn, researchers find
4. Researchers investigate why a limited number of white blood cells are attracted to injured tissue
5. MIT researchers study the danger of toxoplasma parasites
6. Researchers discover potential solutions to New England roadside erosion
7. UK researchers contribute to sequencing strawberry genome
8. An important breakthrough by IRCM researchers in hematopoiesis and the development of B cells
9. Carnegie Mellon researchers discover mechanism for signaling receptor recycling
10. Researchers discover genetic predisposition for breast, kidney cancers
11. Polar bears no longer on thin ice: researchers say polar bears could face brighter future
Post Your Comments:
(Date:5/16/2017)... --  Bridge Patient Portal , an enterprise patient ... Systems , an electronic medical record solutions developer ... a partnership to build an interface between the ... products, including Centricity Practice Solution (CPS), Centricity Business ... integrations will allow healthcare delivery networks using GE ...
(Date:4/19/2017)... , April 19, 2017 The ... vendor landscape is marked by the presence of several ... however held by five major players - 3M Cogent, ... companies accounted for nearly 61% of the global military ... companies in the global military biometrics market boast global ...
(Date:4/13/2017)... , April 13, 2017 UBM,s Advanced ... will feature emerging and evolving technology through ... Innovation Summits will run alongside the expo portion of ... sessions, panels and demonstrations focused on trending topics within ... advanced design and manufacturing event will take place June ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... Market with the addition of its newest module, US Hemostats & Sealants. , ... thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... launched Rosalind™, the first-ever genomics analysis platform specifically designed for life science ... in honor of pioneering researcher Rosalind Franklin, who made a major contribution ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... in its endogenous context, enabling overexpression experiments and avoiding the use of exogenous ... RNA guides is transformative for performing systematic gain-of-function studies. , This complement ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back for its ... 2018 in San Francisco, CA. The Summit brings together current and former FDA office ... directors and government officials from around the world to address key issues in device ...
Breaking Biology Technology: