Navigation Links
Researchers show how Alzheimer's plaques lead to loss of nitric oxide in brain
Date:1/10/2011

PITTSBURGH, Jan. 10 A researcher at the University of Pittsburgh School of Medicine, in collaboration with scientists from the National Institutes of Health (NIH), has discovered that the deadly plaques of Alzheimer's disease interact with certain cellular proteins to inhibit normal signals that maintain blood flow to the brain. Their findings, which could lead to new approaches to treat the dementia, were recently published in Public Library of Science One.

Levels of nitric oxide (NO) a signaling molecule that helps regulate blood flow, immune and neurological processes are known to be low in the brains of people who have Alzheimer's disease, but the reason for that hasn't been clear, said study co-author Jeffrey S. Isenberg, M.D., M.P.H., associate professor, Division of Pulmonary, Allergy, and Critical Care Medicine, Pitt School of Medicine.

"Our research sheds light on how that loss of NO might happen, and reveals biochemical pathways that drug discoverers might be able to exploit to find new medicines for Alzheimer's," he said. "There is evidence that suggests enhancing NO levels can protect neurons from degenerating and dying."

The researchers, led by first author Thomas Miller, Ph.D., and senior author David D. Roberts, Ph.D., both of the Laboratory of Pathology in NIH's National Cancer Institute (NCI), found in mouse and human cell experiments that amyloid-beta, the main component of the plaques that accumulate on brain cells in Alzheimer's, binds to a cell surface receptor called CD36, which causes decreased activity of the enzyme soluble guanylate cyclase to reduce NO signaling. But that inhibitory effect required the presence of and interaction with CD47, another cell surface protein, indicating that additional steps in the pathway remain to be identified.

"It's possible that an agent that could block either CD36 or CD47 could slow the progress of neuronal degeneration in Alzheimer's by protecting the production of NO in the brain," Dr. Isenberg said. "Importantly, we have already indentified therapeutic agents that can interrupt the inhibitory signal induced by these interactions to maximize NO production, signaling and sensitivity."

He and his colleagues currently are studying such blockers in a variety of disease models.

Co-authors of the paper include Hubert B. Shih and Yichen Wang, both of NCI. The research was funded by NCI and the Howard Hughes Medical Institute.


'/>"/>

Contact: Anita Srikameswaran
SrikamAV@upmc.edu
412-578-9193
University of Pittsburgh Schools of the Health Sciences
Source:Eurekalert

Related biology news :

1. Mayo researchers describe measles viral protein movement
2. Increasing diversity of future life science researchers
3. Biofuel grasslands better for birds than ethanol staple corn, researchers find
4. Researchers investigate why a limited number of white blood cells are attracted to injured tissue
5. MIT researchers study the danger of toxoplasma parasites
6. Researchers discover potential solutions to New England roadside erosion
7. UK researchers contribute to sequencing strawberry genome
8. An important breakthrough by IRCM researchers in hematopoiesis and the development of B cells
9. Carnegie Mellon researchers discover mechanism for signaling receptor recycling
10. Researchers discover genetic predisposition for breast, kidney cancers
11. Polar bears no longer on thin ice: researchers say polar bears could face brighter future
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/22/2016)... -- According to the new market research report "Biometric System ... Voice), Multi-Factor), Component (Hardware and Software), Function (Contact and Non-contact), Application, and ... expected to grow from USD 10.74 Billion in 2015 to reach USD ... 2022. Continue Reading ... ...
(Date:11/17/2016)... , Nov. 17, 2016 Global Market Watch: ... Biobanks (Disease-Based Banks, Population-Based Banks and Academics) market is to ... for Private Biobanks shows the highest Compounded Annual Growth Rate ... region during the analysis period 2014-2020. North ... of 9.95% followed by Europe at ...
(Date:11/15/2016)... DUBLIN , Nov 15, 2016 Research ... - Global Forecast to 2021" report to their offering. ... ... reach USD 16.18 Billion by 2021 from USD 6.21 Billion in ... Growth of the bioinformatics market is driven by ...
Breaking Biology News(10 mins):
(Date:12/6/2016)... 6, 2016 /PRNewswire/ - SQI Diagnostics Inc. ("SQI" or the "Company") (TSX-V: ... fourth quarter and fiscal year ended September 30, 2016. ... , , ... sciences and diagnostics company that develops and commercializes proprietary technologies and ... Achieved revenues of $1.4 million more than tripling prior ...
(Date:12/6/2016)... Collins, Colorado (PRWEB) , ... December 06, 2016 ... ... of dynamic aqueous plasma technology platforms, announced today that the company has engaged ... Master Research and Development Agreement (MRDA) with the CSU Office of the Vice ...
(Date:12/6/2016)... , Dec. 6, 2016  SRI International ... $150 million from the National Institutes of Health,s ... the Division of AIDS (NIAID-DAIDS) to support the ... non-vaccine pre-exposure (PreP) agents. Under the seven-year contract, ... product development services for candidate HIV-prevention products that ...
(Date:12/5/2016)... ... 2016 , ... This composition patent, U.S. Patent No. 9,499,637, ... composition claims are not limited to any particular process to make or use ... fibers, graphene, and other materials. A continuation application, U.S. Patent App. No. ...
Breaking Biology Technology: