Navigation Links
Researchers show how Alzheimer's plaques lead to loss of nitric oxide in brain
Date:1/10/2011

PITTSBURGH, Jan. 10 A researcher at the University of Pittsburgh School of Medicine, in collaboration with scientists from the National Institutes of Health (NIH), has discovered that the deadly plaques of Alzheimer's disease interact with certain cellular proteins to inhibit normal signals that maintain blood flow to the brain. Their findings, which could lead to new approaches to treat the dementia, were recently published in Public Library of Science One.

Levels of nitric oxide (NO) a signaling molecule that helps regulate blood flow, immune and neurological processes are known to be low in the brains of people who have Alzheimer's disease, but the reason for that hasn't been clear, said study co-author Jeffrey S. Isenberg, M.D., M.P.H., associate professor, Division of Pulmonary, Allergy, and Critical Care Medicine, Pitt School of Medicine.

"Our research sheds light on how that loss of NO might happen, and reveals biochemical pathways that drug discoverers might be able to exploit to find new medicines for Alzheimer's," he said. "There is evidence that suggests enhancing NO levels can protect neurons from degenerating and dying."

The researchers, led by first author Thomas Miller, Ph.D., and senior author David D. Roberts, Ph.D., both of the Laboratory of Pathology in NIH's National Cancer Institute (NCI), found in mouse and human cell experiments that amyloid-beta, the main component of the plaques that accumulate on brain cells in Alzheimer's, binds to a cell surface receptor called CD36, which causes decreased activity of the enzyme soluble guanylate cyclase to reduce NO signaling. But that inhibitory effect required the presence of and interaction with CD47, another cell surface protein, indicating that additional steps in the pathway remain to be identified.

"It's possible that an agent that could block either CD36 or CD47 could slow the progress of neuronal degeneration in Alzheimer's by protecting the production of NO in the brain," Dr. Isenberg said. "Importantly, we have already indentified therapeutic agents that can interrupt the inhibitory signal induced by these interactions to maximize NO production, signaling and sensitivity."

He and his colleagues currently are studying such blockers in a variety of disease models.

Co-authors of the paper include Hubert B. Shih and Yichen Wang, both of NCI. The research was funded by NCI and the Howard Hughes Medical Institute.


'/>"/>

Contact: Anita Srikameswaran
SrikamAV@upmc.edu
412-578-9193
University of Pittsburgh Schools of the Health Sciences
Source:Eurekalert

Related biology news :

1. Mayo researchers describe measles viral protein movement
2. Increasing diversity of future life science researchers
3. Biofuel grasslands better for birds than ethanol staple corn, researchers find
4. Researchers investigate why a limited number of white blood cells are attracted to injured tissue
5. MIT researchers study the danger of toxoplasma parasites
6. Researchers discover potential solutions to New England roadside erosion
7. UK researchers contribute to sequencing strawberry genome
8. An important breakthrough by IRCM researchers in hematopoiesis and the development of B cells
9. Carnegie Mellon researchers discover mechanism for signaling receptor recycling
10. Researchers discover genetic predisposition for breast, kidney cancers
11. Polar bears no longer on thin ice: researchers say polar bears could face brighter future
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... 2016   The Weather Company , an IBM Business ... industry-first capability in which consumers will be able to interact ... questions via voice or text and receive relevant information about ... Marketers have long sought an advertising solution that can ... personal, relevant and valuable; and can scale across millions of ...
(Date:5/24/2016)... 24, 2016 Ampronix facilitates superior patient care by providing unparalleled technology to ... display is the latest premium product recently added to the range of products distributed ... ... ... Imaging- LCD Medical Display- Ampronix News ...
(Date:5/12/2016)... DALLAS , May 12, 2016 ... has just published the overview results from the Q1 ... of the recent wave was consumers, receptivity to a ... wearables data with a health insurance company. ... choose to share," says Michael LaColla , CEO ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a leader in clinical ... Patient Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio revisits ... tips, tools, and strategies for clinical researchers. , “The landscape of how patients ...
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. , ... tests introduced last year,” stated Bob Salter, Vice President of Regulatory and Industrial ...
Breaking Biology Technology: