Navigation Links
Researchers mimic bacteria to produce magnetic nanoparticles
Date:4/14/2008

When it comes to designing something, its hard to find a better source of inspiration than Mother Nature. Using that principle, a diverse, interdisciplinary group of researchers at the U.S. Department of Energys Ames Laboratory is mimicking bacteria to synthesize magnetic nanoparticles that could be used for drug targeting and delivery, in magnetic inks and high-density memory devices, or as magnetic seals in motors.

Commercial room-temperature synthesis of ferromagnetic nanoparticles is difficult because the particles form rapidly, resulting in agglomerated clusters of particles with less than ideal crystalline and magnetic properties. Size also matters. As particles get smaller, their magnetic properties, particularly with regard to temperature, also diminish.

However, several strains of bacteria produce magnetite (Fe3O4) fine, uniform nanoparticles that have desirable magnetic properties. These magnetotactic bacteria use a protein to form crystalline particles about 50 nanometers in size. These crystals are bound by membranes to form chains of particles which the bacteria use like a compass needle to orient themselves with the Earths magnetic field.

To see if researchers could learn from the bacteria, Surya Mallapragada, Ames Laboratory Materials Chemistry and Biomolecular Materials program director pulled together a team that included microbiologists, biochemists, material chemists, chemical engineers, materials scientists and physicists from Ames Laboratory and Iowa State University.

As a starting point, former ISU microbiologist Dennis Bazylinski, now at the University of Nevada-Las Vegas, isolated several strains of magnetotactic bacteria for use in the study.

Based on earlier work by a Japanese research team, Ames Laboratory biochemist Marit Nilsen-Hamilton looked at several proteins known to bind iron, including Mms6 found in magnetotactic bacteria, which she cloned from the bacteria. This protein is associated with the membranes that surround the magnetite crystals, Nilsen-Hamilton said, and each bacterium appears to make particles with their own unique crystal structure.

Ames Lab chemist Tanya Prozorov tried synthesizing crystals, using the proteins with various concentrations of reagents in an aqueous solution, but the particles formed quickly, were small and lacked specific crystal morphology. At the suggestion of Ames Lab senior physicist and crystal growth expert Paul Canfield, the team used polymer gels developed by Mallapragada and Balaji Narasimhan, who are both Ames Lab scientists as well as ISU chemical engineers, to slow down the reaction and help control formation of the nanocrystals and minimize aggregation.

Its simple chemistry, Prozorov said, and you can judge the reaction by the color, watching it go from yellow to green to black as the crystals form. Once the crystals precipitate out, we use a magnet to concentrate the particles at the bottom of the flask, then separate them out to study them further.

Prozorov also conducted electron microscopy analysis of the synthetic nanoparticles which showed that Mms6 produced well-formed, faceted crystals resembling those produced naturally by the bacteria. Powder X-ray diffraction studies verified the crystal structure of the particles.

Ames Lab physicist Ruslan Prozorov, tested the magnetic properties of the synthetic crystals which also showed striking similarities to the bacteria-produced crystals and bulk magnetite. The magnetic studies also showed that the chains of particles formed by the bacteria had a much sharper magnetic transition definition at a higher temperature than single crystals.

Nature found a way to beat the thermodynamics (of crystalline magnetite) by arranging the nanoparticles in such a way that they arent affected by temperature the way individual crystals are, Ruslan Prozorov said.

With this basic understanding of magnetotatic bacteria and the ability to synthesize magnetite nanoparticles, the team proceeded to find out if the bioinspired approach could be used to produce cobalt-ferrite nanoparticles. Cobalt-ferrite, which doesnt occur in living organisms, has more desirable magnetic properties than magnetite, yet presents the same problems for commercially producing nano-scale particles.

In addition to their previous method, the team took the added step of covalently attaching the Mms6 to a strand of functionalized polymer known to self-assemble and form thermoreversible gels. Because the polymer strands come together in a particular way, the attached proteins had a specific alignment that the researchers hoped would serve as a template for the formation of cobalt-ferrite crystals. And the way in which the gel formed would help control the speed of the reaction.

It worked rather well, Tanya Prozorov said, and we ended up with very nice hexagonal cobalt ferrite crystals and added that she is studying whether the protein will also work for the other neodymium, gadolinium, and holmium ferrites.

The project is funded by the Department of Energys Office of Basic Energy Sciences, the National Science Foundation, and the Alfred P. Sloan Foundation. The research has generated fodder for a number of journal articles, including published works in ACSNano, Physical Review B, and Advanced Functional Materials.

This is an exciting interdisciplinary project addressing some of Basic Energy Sciences Grand Challenges by bringing together materials scientists, chemists, physicists and biologists to develop new bioinspired materials of relevance to DOE's mission, said Mallapragada. Ames Laboratory is a wonderful environment in which to foster and grow these sorts of interdisciplinary initiatives because teamwork is really built into the culture here."


'/>"/>

Contact: Kerry Gibson
kgibson@ameslab.gov
515-294-1405
DOE/Ames Laboratory
Source:Eurekalert

Related biology news :

1. Vitamin D and calcium influence cell death in the colon, researchers find
2. UD researchers discover novel gene toggles in worlds top food crop
3. Pitt and University of Chicago researchers uncover process behind heart muscle contraction
4. Researchers close in on origins of main ingredient of Alzheimers plaques
5. War between the sexes begins before twins birth, TAU researchers say
6. Researchers see structure of open nicotinic acetylcholine ion channels
7. Environmental enrichment can reduce cocaine use, researchers find
8. Fabled Freshman 15 pound gain more often only 5, report researchers
9. Synthetic molecules may be less expensive alternative to therapeutic antibodies, researchers find
10. Smithsonian researchers show major role of bats in plant protection
11. NC State researchers identify genes key to hormone production in plants
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
(Date:3/23/2016)... Massachusetts , March 23, 2016 /PRNewswire/ ... im Interesse erhöhter Sicherheit Gesichts- und Stimmerkennung ... Xura, Inc. (NASDAQ: MESG ), ... bekannt, dass das Unternehmen mit SpeechPro zusammenarbeitet, ... aus der Finanzdienstleistungsbranche, wird die Möglichkeit angeboten, ...
(Date:3/17/2016)... , March 17, 2016 ABI Research, ... forecasts the global biometrics market will reach more ... 118% increase from 2015. Consumer electronics, particularly smartphones, ... fingerprint sensors anticipated to reach two billion shipments ... Dimitrios Pavlakis , Research Analyst at ABI ...
Breaking Biology News(10 mins):
(Date:5/24/2016)... ... 24, 2016 , ... Cell therapies for a range of ... research at Worcester Polytechnic Institute (WPI) that yielded a newly patented method of ... The novel method, developed by WPI faculty members Raymond Page, PhD, professor of ...
(Date:5/24/2016)... , ... May 24, 2016 , ... Last week, Callan ... corporate executives and entrepreneurs, held The Future of San Diego Life Science event at ... Diego life science community attended the event with speakers Dr. Rich Heyman, former CEO ...
(Date:5/23/2016)... (PRWEB) , ... May 23, 2016 , ... The need for blood donations in South ... week by the South Texas Blood & Tissue Center, blood donations are on the decline. ... years, and they are down 21 percent in South Texas in the last four years ...
(Date:5/23/2016)... , May 23, 2016 Zimmer Biomet Holdings, Inc. ... today announced that its Board of Directors has approved the ... second quarter of 2016. The cash dividend ... July 29, 2016 to stockholders of record as of the ... dividends are subject to approval of the Board of Directors ...
Breaking Biology Technology: