Navigation Links
Researchers identify proteins that might contribute to memory loss and Alzheimer's disease
Date:1/15/2010

PHOENIX, Ariz. Jan. 15, 2009 A scientific group led by the Translational Genomics Research Institute (TGen) have identified three kinases, or proteins, that dismantle connections within brain cells, which may lead to memory loss associated with Alzheimer's disease.

These findings, the results of a multi-year TGen study, are published in this month's edition of BMC Genomics in a paper titled: High-content siRNA screening of the kinome identifies kinases involved in Alzheimer's disease-related tau hyperphosphorylation.

The three kinases were found to cause a malfunction in tau, a protein critical to the formation of the microtubule bridges within brain cells, or neurons. These bridges support the synaptic connections that, like computer circuits, allow neurons to communicate with each other.

"The ultimate result of tau dysfunction is that neurons lose their connections to other neurons, and when neurons are no longer communicating, that has profound effects on cognition the ability to think and reason,'' said Dr. Travis Dunckley, an Associate Investigator in TGen's Neurodegenerative Research Unit and the scientific paper's senior author.

Tau performs a critical role in the brain by helping bind together microtubules, which are sub-cellular structures that create scaffolding in the neurons, allowing them to stretch out along bridges called axons. The axons support the synaptic, or chemical, connections with other neurons.

Under normal circumstances, kinases regulate tau by adding phosphates. This process, called tau phosphorylation, enables the microtubules to unbind and then bind again, allowing brain cells to connect and reconnect with other brain cells.

"That facilitates synaptic plasticity. It facilitates the ability of people to form new memories to form new connections between different neurons and maintain those memories. So, it's an essential function,'' Dr. Dunckley said.

However, sometimes the tau protein becomes hyperphosphorylated, a condition in which the tau creates neurofibrillary tangles, one of the signature indicators of Alzheimer's.

"When tau protein is hyperphosphorylated, the microtubule comes apart basically destroying that bridge and the neurons can no longer communicate with each other,'' Dr. Dunckley said.

TGen investigators created sophisticated tests to look at all 572 known and theoretical kinases within human cells. They identified 26 associated with the phosphorylation of tau. Of these 26, three of them EIF2AK2, DYRK1A and AKAP13 were found to cause hyperphosphorylation of tau, permanently dismantling the microtubule bridges.

"This paper shows, for the first time, these three kinases affect Alzheimer's disease-relevant tau hyperphosphorylation, in which most of the tau protein is now driven into a permanently phosphorylated form,'' Dr. Dunckley said.

Dr. Eric Reiman, clinical director of TGen's Neurogenomics Division and executive director of the Banner Alzheimer's Institute, explained that tau holds together the skeleton inside neurons. When phosphate molecules stick to tau proteins, the skeleton falls apart and the neurons begin to retract their synaptic branches and die, leading to memory loss and thinking problems.

In this study, researchers used a molecular tool called siRNA to screen the entire human genome, said Dr. Reiman, a co-author of the scientific paper. This tool enabled the TGen-led team to discover which proteins, when genetically turned off, prevent phosphate molecules from sticking to tau. The three kinases, or proteins, that appear to contribute to the formation of brain tangles, can now be targeted by protein-inhibitor drugs.

"This study used a powerful tool to discover three proteins that may be involved in tangle formation. If safe and well-tolerated tangle-busting medications can be developed, they offer great promise in the treatment of Alzheimer's disease,'' said Dr. Reiman, who also is Director of the Arizona Alzheimer's Consortium.

The next step will be to identify drug compounds that can negate the effects of the three kinases linked to tau hyperphosphorylation.

"The reason that we did this study was to identify therapeutic targets for Alzheimer's disease, whereby we could modify the progression of tau pathology,'' Dr. Dunckley said. "This was a screen to identify what the relevant targets are. Now, we want to match those targets to treatments.''


'/>"/>

Contact: Steve Yozwiak
syozwiak@tgen.org
602-343-8704
The Translational Genomics Research Institute
Source:Eurekalert

Related biology news :

1. University of Pittsburgh researchers launching trial of new osteoporosis drug
2. TGen-Scottsdale Healthcare researchers make breakthrough in lung cancer
3. Researchers discover genetic differences between lethal and treatable forms of leukemia
4. U of Alberta researchers find mechanism that could prevent or treat deadly peroxisome diseases
5. Researchers pin down long-elusive protein thats essential to life as we know it
6. Researchers use new acoustic tools to study marine mammals and fish
7. Researchers to investigate the genetics of congenital heart disease
8. Researchers design a tool to induce controlled suicide in human cells
9. Researchers work on vaccine to improve immune system in newborns
10. IUPUI researchers tackle protein mechanisms behind limb regeneration
11. MDC researchers identify a scaffold regulating protein disposal
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2017)... NEW YORK , Feb. 8, 2017 /PRNewswire/ ... an individual,s voice to match it against a ... voice such as pitch, cadence, and tone are ... systems require minimal hardware installation, as most PCs ... remotely for different transactions. Voice recognition biometrics are ...
(Date:2/8/2017)... YORK , Feb. 7, 2017 Report Highlights ... The ... should reach $11.4 billion by 2021, growing at a compound ... Includes - An overview of the global markets for synthetic ... 2015, estimates for 2016, and projections of compound annual growth ...
(Date:2/8/2017)... Feb. 7, 2017 Report Highlights ... 2021 from $8.3 billion in 2016 at a compound ... 2021. Report Includes - An overview of the ... trends, with data from 2015 and 2016, and projections ... Segmentation of the market on the basis of product ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... ... March 23, 2017 , ... Advanced Polymer Monitoring Technologies (APMT), ... Sigmund “Sig” Floyd as Vice President ? Global Business Development. Dr. Floyd will ... “Dr. Floyd’s career has spanned 30 years in the chemicals and equipment industries. ...
(Date:3/22/2017)... March 22, 2017 Good Start Genetics, a ... eclipsed the 130 million covered lives mark through its ... Texas . With newly signed contracts ... to enjoy strong payor acceptance based on the quality ... and genetic counseling, its industry-leading customer care and support ...
(Date:3/22/2017)... /PRNewswire/ - FACIT announced a seed stage investment ... start-up created by FACIT focused on developing a ... with non-dilutive capital, achieves a targeted $3.0M financing ... Propellon to accelerate the nomination of a candidate ... entering a strategic partnership for clinical trials in ...
(Date:3/22/2017)... , ... March 21, 2017 , ... ... biologics. To acquire information on the desired increase and/or decrease in antibody-dependent cellular ... for rapid N-glycosylation profiling of therapeutic antibodies. , To meet this demand, ...
Breaking Biology Technology: