Navigation Links
Researchers identify proteins involved in new neurodegenerative syndrome
Date:8/15/2007

The interplay of two proteins that bind to messenger RNA, a molecule that mediates translation of the information encoded in genes into proteins, triggers the appearance of fragile X-associated tremor/ataxia syndrome (FTAX), a late-life disorder associated with the gene that causes fragile X syndrome in children, said researchers from Baylor College of Medicine in Houston and Emory University School of Medicine in a report that appears today in the journal Neuron.

They are two different diseases, but they are related to one gene, said Dr. Juan Botas, associate professor of molecular and human genetics at BCM. Fragile X syndrome is the most common inherited form of mental retardation. It occurs in one in 4,000 males and one in 6,000 females.

The ways in which the two disorders occur differ. In both, the gene FMR1 contains too many repeats of the tri-nucleotide CGG. Those with fragile X syndrome have more than 200 repeats, causing the person to lack the fragile X mental retardation protein (FMRP) encoded by the gene. Those who develop fragile X-associated tremor/ataxia syndrome later in life have a premutation set of repeats of CGG totaling between 60 and 200. These individuals make the FMRP protein and do not develop fragile X syndrome. Previously, it was thought that 60-200 repeats had no effect on premutation carrier individuals. Now it appears that it does affect a subset of carriers, although it is unclear how many.

People with fragile X-associated tremors/ataxia syndrome suffer from tremor that becomes more severe over time. They have difficulty with walking and balance. Their disease can progress slowly over years until they have difficulty carrying out the activities of daily life. It is found in the grandfathers of children with fragile X syndrome, and it often begins when people are in the 50s and 60s. Most of those with the disease are men.

Researchers noticed that people with the fragile X-associated tremor/ataxia syndrome have higher than normal levels of messenger RNA. Messenger RNA or mRNA takes the proteins blueprint from the DNA in the cell nucleus to the protein-manufacturing ribosome in the cytoplasm (the jelly-like material that fills the cells interior).

Studying fruit flies, Botas and his colleagues found two RNA-binding proteins hnRNP A2/B1 and CUGBP1 that are involved in the new disease. RNA-binding proteins control the metabolism of mRNA. However, these RNA-binding proteins tend to bind to CGG repeats. When there are too many CGG repeats, too many molecules of these proteins are bound to the repeats, preventing them from fulfilling their normal function of controlling mRNA metabolism.

When Botas and his colleagues created a fly with too many CGG repeats, the fly developed the neurodegenerative disease. However, when they developed a fly that made more than the normal amount of the RNA-binding proteins, the disease was much less severe.


'/>"/>
Contact: Kimberlee Barbour
kbarbour@bcm.edu
713-798-4712
Baylor College of Medicine
Source:Eurekalert

Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. NYU researchers simulate molecular biological clock
5. Researchers reveal the infectious impact of salmon farms on wild salmon
6. Researchers identify target for cancer drugs
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/17/2016)... -- AIC announces that it has just released a new white paper authored by Zettar ... high speed data transfer storage solutions. Photo - http://photos.prnewswire.com/prnh/20161116/440463 ... ... ... Setting up a high performance computing or HPC system can be ...
(Date:11/14/2016)... Nov. 14, 2016  Based on its ... Frost & Sullivan recognizes FST Biometrics with ... for Visionary Innovation Leadership. FST Biometrics emerged ... identification market by pioneering In Motion Identification ... instant, seamless, and non-invasive verification. This patented ...
(Date:6/21/2016)... VANCOUVER, British Columbia , June 21, 2016 ... been appointed to the new role of principal ... has been named the director of customer development. ... , NuData,s chief technical officer. The moves reflect ... development teams in response to high customer demand ...
Breaking Biology News(10 mins):
(Date:11/30/2016)...  GenomOncology today announced the appointment of Joshua F. ... Dr. Coleman will oversee clinical content development and ... The GenomOncology software suite empowers molecular pathologists with a seamless ... decision support, from quality control through reporting. ... , , ...
(Date:11/30/2016)... /PRNewswire/ - Portage Biotech Inc. ("Portage" or "the Company") ... to announce the formation of EyGen, Ltd. a ... assets through proof of concept. EyGen,s lead asset ... Pharmaceuticals Limited and being developed for topical ophthalmic ... segment diseases. This agent has the potential to ...
(Date:11/30/2016)...  The Allen Institute for Cell Science has ... available collection of gene edited, fluorescently tagged human ... structures with unprecedented clarity. Distributed through the Coriell ... a crucial first step toward visualizing the dynamic ... human cells healthy and what goes wrong in ...
(Date:11/30/2016)...  Tempus, a technology company focused on supporting ... Cancer Center have partnered to better determine which ... treatment based on next generation genomic and transcriptomic ... research collaboration, Tempus will provide sequencing and analysis ... to Penn. Utilizing next-generation sequencing, machine learning and ...
Breaking Biology Technology: