Navigation Links
Researchers identify proteins involved in new neurodegenerative syndrome

The interplay of two proteins that bind to messenger RNA, a molecule that mediates translation of the information encoded in genes into proteins, triggers the appearance of fragile X-associated tremor/ataxia syndrome (FTAX), a late-life disorder associated with the gene that causes fragile X syndrome in children, said researchers from Baylor College of Medicine in Houston and Emory University School of Medicine in a report that appears today in the journal Neuron.

They are two different diseases, but they are related to one gene, said Dr. Juan Botas, associate professor of molecular and human genetics at BCM. Fragile X syndrome is the most common inherited form of mental retardation. It occurs in one in 4,000 males and one in 6,000 females.

The ways in which the two disorders occur differ. In both, the gene FMR1 contains too many repeats of the tri-nucleotide CGG. Those with fragile X syndrome have more than 200 repeats, causing the person to lack the fragile X mental retardation protein (FMRP) encoded by the gene. Those who develop fragile X-associated tremor/ataxia syndrome later in life have a premutation set of repeats of CGG totaling between 60 and 200. These individuals make the FMRP protein and do not develop fragile X syndrome. Previously, it was thought that 60-200 repeats had no effect on premutation carrier individuals. Now it appears that it does affect a subset of carriers, although it is unclear how many.

People with fragile X-associated tremors/ataxia syndrome suffer from tremor that becomes more severe over time. They have difficulty with walking and balance. Their disease can progress slowly over years until they have difficulty carrying out the activities of daily life. It is found in the grandfathers of children with fragile X syndrome, and it often begins when people are in the 50s and 60s. Most of those with the disease are men.

Researchers noticed that people with the fragile X-associated tremor/ataxia syndrome have higher than normal levels of messenger RNA. Messenger RNA or mRNA takes the proteins blueprint from the DNA in the cell nucleus to the protein-manufacturing ribosome in the cytoplasm (the jelly-like material that fills the cells interior).

Studying fruit flies, Botas and his colleagues found two RNA-binding proteins hnRNP A2/B1 and CUGBP1 that are involved in the new disease. RNA-binding proteins control the metabolism of mRNA. However, these RNA-binding proteins tend to bind to CGG repeats. When there are too many CGG repeats, too many molecules of these proteins are bound to the repeats, preventing them from fulfilling their normal function of controlling mRNA metabolism.

When Botas and his colleagues created a fly with too many CGG repeats, the fly developed the neurodegenerative disease. However, when they developed a fly that made more than the normal amount of the RNA-binding proteins, the disease was much less severe.

Contact: Kimberlee Barbour
Baylor College of Medicine

Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. NYU researchers simulate molecular biological clock
5. Researchers reveal the infectious impact of salmon farms on wild salmon
6. Researchers identify target for cancer drugs
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:
(Date:11/19/2015)... Nov. 19, 2015  Although some 350 companies are ... by a few companies, according to Kalorama Information. These include ... of the market share of the 6.1 billion-dollar molecular ... World Market for Molecular Diagnostic s .    ... is still controlled by one company and only a ...
(Date:11/17/2015)... PARIS , November 17, 2015 ... 17 au 19 novembre  2015.  --> Paris ... 2015.  --> DERMALOG, le leader de l,innovation ... à la fois passeports et empreintes sur la même ... pour les passeports et l,autre pour les empreintes digitales. ...
(Date:11/12/2015)... golden retriever that stayed healthy despite having the gene ... new lead for treating this muscle-wasting disorder, report scientists ... and Harvard and the University of São Paolo in ... pinpoints a protective gene that boosts muscle regeneration, ... Children,s lab of Lou Kunkel , PhD, is ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... includes an MPP licen c ... , s Solid Drug Nanoparticle (SDN) Technology ; Aims ... through cost cuts of priority ... anywhere in the world will have the right to make, use and distribute lower ... licensees based anywhere in the world will have the right to make, use and ...
(Date:11/30/2015)... Md. , Nov. 30, 2015 ... development company committed to the fostering and monetization ... the current and prospective initiatives designed to create ... Chief Executive Officer of Spherix. "Based on published ... future licensees exceeds $50 billion and Spherix will ...
(Date:11/30/2015)... 2015 TapImmune, Inc. (TPIV), ... innovative peptide and gene-based immunotherapeutics and vaccines for the ... will be presenting at the 8 th Annual ... 2.30 PM PT. Dr. John N. Bonfiglio ... giving the presentation and will join TapImmune management in ...
(Date:11/30/2015)... Germany , November 30, 2015 ... Vienna, Austria to be held December ... (ECNR) in Vienna, Austria to ... wholly owned subsidiary of Vycor Medical, Inc. ("Vycor") (OTCQB: VYCO), ... NovaVision Therapy Suite at the 3rd European Congress of ...
Breaking Biology Technology: