Navigation Links
Researchers identify key culprit causing muscle atrophy
Date:8/13/2012

Whether you're old, have been ill, or suffered an injury, you've watched gloomily as your muscles have atrophied. The deterioration of muscleeven slight or gradualis about as common to the human condition as breathing.

Yet despite its everyday nature, scientists know little about what causes skeletal muscles to atrophy. They know proteins are responsible, but there are thousands of possible suspects, and parsing the key actors from the poseurs is tricky.

In a new paper, researchers from the University of Iowa report major progress. The team has identified a single protein, called Gadd45a, and determined that it orchestrates 40 percent of the gene activity that ultimately causes skeletal muscle to atrophy. Moreover, the researchers have learned that Gadd45a does its devilish work inside the muscle cell's nucleus, causing such a ruckus as it reprograms hundreds of genes that it changes the nucleus's shape.

"We now understand a key molecular mechanism of skeletal muscle atrophy," says Christopher Adams, associate professor of internal medicine at the UI and corresponding author on the paper published in the Journal of Biological Chemistry. "This finding could help us find a therapy for treating muscle atrophy in patients, and we now know a great place to start is by reducing Gadd45a."

Adams and his team zeroed in on Gadd45a like sleuths following a trail of clues. The researchers knew from previous work that when skeletal muscle is stressed from malnutrition, nerve damage, or inactivity, it increases its production of a protein called ATF4. That protein, in turn, initiates muscle atrophy by activating a slew of genes.

But the details remained elusive. For example, are all the genes equally important or do some play larger roles than others?

To find out, Adams and his colleagues conducted a series of experiments to discover the critical ATF4 target genes. The tests showed that ATF4 caused muscle atrophy by activating the Gadd45a gene. Further tests showed Gadd45a didn't need its protein benefactor to do its atrophy work either, meaning it could act independently of the ATF4 pathway.

"Basically, when we did the experiments, thousands of mRNAs (the genetic messengers) were measured, but only one jumped out, and it was Gadd45a," says Adams, also a faculty scholar at the Fraternal Order of Eagles Diabetes Research Center at the UI. "It was the only one that met all the tests' criteria."

The researchers learned that Gadd45a affected muscles in two main ways: it instructed muscle cells to produce fewer proteins (needed to maintain muscle), and it caused proteins already existing in muscle fibers to break down. The result on both counts: muscle atrophy.

The team then turned to find out how Gadd45a did its work. The nucleus of a muscle cell that is stressed changes from a cigar shape to a swollen bulb, with enlarged nucleoli (protein containers inside the nucleus). When Adams and his team injected Gadd45a into a muscle cell, the nucleus changed shape the same way as if it were stressed.

"To put this all together, it means Gadd45a is going into the muscle nucleus, and it totally changes it, so much so that the changes are visible," Adams said. "It's turning genes on, and it's turning genes off. It's changed the cell."

Gadd45a changes roughly 600 genes associated with muscle atrophy, by increasing mRNAs charged either with breaking down muscle proteins or reducing muscle protein growth. The total is about 40 percent of all mRNAs believed to be involved in muscle deterioration in humans, the researchers reported in the paper.

"Gadd45a is like a central switch for muscle atrophy," Adams says. "If you can block it, you can conceivably stunt muscle atrophy to a large extent."

The researchers aim to find out how to block Gadd45a and to find the other signaling pathways involved in muscle atrophy.

Scott Ebert, a graduate student at the UI, is the first author on the paper, titled, "Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy," and published on Aug. 10. Contributing authors include Michael Dyle, Kale Bongers, Daniel Fox, Jason Dierdorff, and Eric Foster at the UI; and Steven Kunkel and Steven Bullard, of the UI and the Iowa City Veterans Medical Center. Adams also has an affiliation with the Iowa City Veterans Medical Center.


'/>"/>

Contact: Richard Lewis
richard-c-lewis@uiowa.edu
319-384-0012
University of Iowa
Source:Eurekalert  

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
3. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
4. UNH researchers find African farmers need better climate change data to improve farming practices
5. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
6. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
7. Researchers print live cells with a standard inkjet printer
8. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
9. Researchers reveal how a single gene mutation leads to uncontrolled obesity
10. Researchers discover novel therapy for Crohns disease
11. New paper by Notre Dame researchers describes method for cleaning up nuclear waste
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers identify key culprit causing muscle atrophy
(Date:4/17/2017)... MELBOURNE, Florida , April 17, 2017 ... security technology company, announces the filing of its 2016 Annual Report ... Securities and Exchange Commission. ... Report on Form 10-K is available in the Investor Relations section ... well as on the SEC,s website at http://www.sec.gov . ...
(Date:4/11/2017)... DUBLIN , Apr. 11, 2017 Research ... Tracking Market 2017-2021" report to their offering. ... The global eye tracking market to grow at ... The report, Global Eye Tracking Market 2017-2021, has been prepared based ... report covers the market landscape and its growth prospects over the ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... They call it the ... network, a depiction of a system of linkages and connections so complex and ... professor of computer science at Worcester Polytechnic Institute (WPI) and director of the ...
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Vilnius, Lithuania, announced today that they have entered into a multiyear collaboration to ... provide CRISPR researchers with additional tools for gene editing across all applications. , ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... Market with the addition of its newest module, US Hemostats & Sealants. , ... thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... platform specifically designed for life science researchers to analyze and interpret datasets, ... Franklin, who made a major contribution to the discovery of the double-helix ...
Breaking Biology Technology: