Navigation Links
Researchers identify a new gene involved in autophagy, the cellular recycling program
Date:1/21/2010

This release is available in Spanish.

All cells are equipped with a recycling programme to collect and remove unnecessary cellular components. Autophagy sequesters and digests aged organelles, damaged proteins and other components, which, if not disintegrated and recycled, threaten cell viability. Researchers at the Institute for Research in Biomedicine (IRB Barcelona) led by Antonio Zorzano, head of the Molecular Medicine Programme and senior professor of the University of Barcelona, have identified a new gene that favours cell autophagy. The article has been published in EMBO Reports, which highlights it in the section "Hot off the press".

One of the main challenges in biomedicine is to decipher the complete map of genes and their products, the proteins that regulates autophagy in cells. "The interest lies in its association with human diseases", says Zorzano. There is increasing evidence of a link between autophagy and the appearance and progression of cancer, neurodegenerative pathologies, infections and aging. For example, several studies demonstrate that some neurodegenerative diseases caused by the abnormal aggregation of proteins, such as Huntington's disease, are associated with reduced autophagy. Pharmacological induction of this process could help to remove the cellular protein aggregates and to relieve the symptoms.

Caroline Mauvezin, PhD student with Zorzano and first author of the article, says that "it is possible to envisage future therapies based on the modulation of autophagy". However, further knowledge about this pathway and its components are required as well as a complete understanding of the precise role of autophagy in each disease in order to be able to manipulate it for therapeutic purposes. "We have identified a new player and now we have to study it in depth", says Mauvezin.

DOR favours autophagy

The study reveals that the DOR protein is involved in the initial, and most unknown, stages of autophagy. DOR facilitates the formation of autophagosomes, the structures that envelop, capture and transport components to lysosomes. Autophagosomes fuse to lysosomes to form autolysosomes, where several enzymes finally remove the unwanted or harmful intracellular debris.

Using in vitro cells and the fruit fly Drosophila, the researchers have demonstrated that the autophagic capacity of a cell decreases in the absence of DOR. This new gene in the autophagic pathway opens up many avenues of study, for example examining whether DOR is active or silenced in tumour cells. But the scientists are prudent with respect to the planning of future studies. "First we have to determine the precise function of DOR in the autophagic pathway in rat models in vivo, in order to determine its relevance and to identify all the proteins that it is associated with in this context", explains Zorzano.


'/>"/>

Contact: Snia Armengou
sonia.armengou@irbbarcelona.org
34-934-037-255
Institute for Research in Biomedicine (IRB Barcelona)
Source:Eurekalert  

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers identify a new gene involved in autophagy, the cellular recycling program
(Date:11/28/2016)... 28, 2016 "The biometric ... 16.79%" The biometric system market is in the ... the near future. The biometric system market is expected ... at a CAGR of 16.79% between 2016 and 2022. ... biometric technology in smartphones, rising use of biometric technology ...
(Date:11/19/2016)... DALLAS , Nov. 18, 2016 Securus ... technology solutions for public safety, investigation, corrections and monitoring, ... a smaller competitor, ICSolutions, to have an independent technology ... set, the most modern high tech/sophisticated telephone calling platform, ... tell customers that they do most of what we ...
(Date:11/15/2016)... Nov 15, 2016 Research and Markets has ... to 2021" report to their offering. ... ... Billion by 2021 from USD 6.21 Billion in 2016, growing at ... Growth of the bioinformatics market is driven by the growing demand ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... , Dec. 8, 2016 Soligenix, Inc. (OTCQB: ... focused on developing and commercializing products to treat rare ... today that it will be hosting an Investor Webcast ... on the origins of innate defense regulators (IDRs) as ... of oral mucositis and the recently announced and published ...
(Date:12/8/2016)... 2016 Savannah River Remediation LLC group ... NewTechBio,s NT-MAX Lake & Pond Sludge and ... in conjunction with Hexa Armor/ Rhombo cover manufactured ... Pollutant Discharge Elimination System requirements. The ... history of elevated pH levels, above 8.5, especially ...
(Date:12/8/2016)... to fuel Philadelphia,s innovative digital ... Southeastern Pennsylvania (" Ben Franklin "); Independence ... Cross; and Safeguard Scientifics ("Safeguard") (NYSE: SFE ... funding initiative over a four year period to grow ... burgeoning economic vitality in digital health, Ben Franklin ...
(Date:12/7/2016)... ... 07, 2016 , ... ACEA Biosciences, Inc. presented today updated ... trial for its lead drug candidate, AC0010, at the World Conference on Lung ... determine the safety, antitumor activity, and recommended phase II dosage of AC0010 in ...
Breaking Biology Technology: