Navigation Links
Researchers get close-up view of water pores needed in the eye's lens
Date:8/5/2013

Researchers have achieved dynamic, atomic-scale views of a protein needed to maintain the transparency of the lens in the human eye. The work, funded in part by the National Institutes of Health, could lead to new insights and drugs for treating cataract and a variety of other health conditions.

Aquaporin proteins form water channels between cells and are found in many tissues, but aquaporin zero (AQP0) is found only in the mammalian lens, which focuses light onto the retina, at the back of the eye. The lens is primarily made up of unique cells called lens fibers that contain little else besides water and proteins called crystallins. Tight packing of these fibers and of the crystallin proteins within them helps create a uniform medium that allows light to pass through the lens, almost as if it were glass.

Abnormal development or age-related changes in the lens can lead to cataracta clouding of the lens that causes vision loss. Besides age, other risk factors for cataract include smoking, diabetes, and genetic factors. Mutations in the AQP0 gene can cause congenital cataract and may increase the risk of age-related cataract.

"The AQP0 channel is believed to play a vital role in maintaining the transparency of the lens and in regulating water volume in the lens fibers, so understanding the molecular details of how water flows through the channel could lead to a better understanding of cataract," said Dr. Houmam Araj, who oversees programs on lens, cataract and oculomotor systems at NIH's National Eye Institute (NEI), which helped fund the research.

Closing of AQP0 channels is regulated by a calcium-sensitive protein called calmodulin, but the precise mechanism has been unclear. Some models have suggested that calmodulin simply acts as a plug to fill the open channel. The new study, published in Nature Structural and Molecular Biology, reveals a more nuanced process in which calmodulin essentially grasps the open channel and forces it to close.

The research was a collaboration between investigators at the University of California, Irvine, and the Janelia Farm Research Campus in Ashburn, Va., a part of the Howard Hughes Medical Institute (HHMI). Drs. James Hall and Douglas Tobias led the effort at UC Irvine. Dr. Tamir Gonen led the effort at Janelia Farm.

In prior studies, Dr. Gonen had examined the atomic structure of the AQP0 protein by X-ray crystallography, which involves crystallizing a protein and bombarding it with X-rays. But X-ray crystallography does not work well for large groups of proteins or for proteins in motion. So in the new study, the researchers first used electron microscopy to view AQP0 and calmodulin bound together. Then they combined their microscopy and crystallography data to generate computerized models of how the two proteins interact and to identify the most critical amino acids (the building blocks for proteins) within AQP0. To test their models, they neutralized those amino acids one by one in the actual AQP0 channel.

The AQP0 channel is made up of four identical barrel-shaped units, bundled together side by side. The researchers found that in the presence of calcium, calmodulin binds to one unit and then another, as if grabbing a pair of reins. This makes the channel twist slightly, which causes just a few amino acids within each unit to slide into the channel's core and block the flow of water.

"Calmodulin essentially throws a molecular switch that moves in and out of the water pore, like the gate valve of a plumbing fixture," Dr. Hall said.

This new view of AQP0 could help lead to new approaches for treating cataract, Dr. Hall said. Cataracts are the most common cause of blindness worldwide. In the United States, they affect about 1 in 6 people over age 40 and half over age 80. Congenital cataracts (present from birth) affect about 1 in 5,000 American children.

Cataracts can be successfully treated with surgery, in which the cloudy lens is removed and replaced with an artificial plastic lens. But the new findings "may be a step toward learning how to prevent or delay cataracts," said Dr. Hall.

The new findings also provide inroads to understanding how calmodulin interacts with a variety of protein channels, and thus could open doors to new drugs for other common health conditions. In addition to aquaporins, our bodies rely on a vast menagerie of channels, many of which are regulated by calmodulin. For example, calmodulin helps control the gating of ion channels, which allow the passage of ions (charged particles) in and out of our cells and are essential for nerve cell firing, muscle contraction, and the rhythmic beating of the heart. This study provides the first structural model of calmodulin bound to any complete protein channel.


'/>"/>

Contact: Jean Horrigan
neinews@nei.nih.gov
301-496-5248
NIH/National Eye Institute
Source:Eurekalert

Related biology news :

1. Practice makes the brains motor cortex more efficient, Pitt researchers say
2. MIT researchers reveal how the brain keeps eyes on the prize
3. Mount Sinai researchers develop first successful laboratory model for studying hepatitis C
4. Montana State University researchers highlight bears use of Banff highway crossings
5. HudsonAlpha and UAB researchers work to identify optimal treatments for ER+ breast cancer
6. UPCI researchers target cell sleep to lower chances of cancer recurrence
7. U-M researchers land $2M grant to cooperate with nature on growing algae for energy
8. UT Southwestern researchers identify novel mechanism that helps stomach bug cause illness
9. Researchers uncover cellular mechanisms for attention in the brain
10. Notre Dame researchers develop system that uses a big data approach to personalized healthcare
11. U of M researchers unveil nations first porcine virus rapid detection test
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... 2, 2016   The Weather Company , an IBM ... an industry-first capability in which consumers will be able to ... ask questions via voice or text and receive relevant information ... Marketers have long sought an advertising solution that ... be personal, relevant and valuable; and can scale across millions ...
(Date:5/24/2016)... facilitates superior patient care by providing unparalleled technology to leaders of the medical imaging ... product recently added to the range of products distributed by Ampronix. Photo ... ... ... News ...
(Date:5/12/2016)... May 12, 2016 WearablesResearch.com , a ... the overview results from the Q1 wave of its ... wave was consumers, receptivity to a program where they ... a health insurance company. "We were surprised ... says Michael LaColla , CEO of Troubadour Research, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... SANTA MONICA, Calif. , June 23, 2016  The Prostate Cancer ... to pioneer increasingly precise treatments and faster cures for prostate cancer. Members of ... 77 institutions across 15 countries. Read More About the ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... launch of the Supplyframe Design Lab . Located in Pasadena, Calif., the ... future of how hardware projects are designed, built and brought to market. , ...
(Date:6/23/2016)... 2016 Apellis Pharmaceuticals, Inc. today announced ... of its complement C3 inhibitor, APL-2. The trials ... dose studies designed to assess the safety, tolerability, ... in healthy adult volunteers. Forty subjects ... single dose (ranging from 45 to 1,440mg) or ...
(Date:6/23/2016)... NEW YORK , June 23, 2016 ... the trading session at 4,833.32, down 0.22%; the Dow Jones ... the S&P 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ... BIND Therapeutics Inc. (NASDAQ: BIND ). Learn more ...
Breaking Biology Technology: