Navigation Links
Researchers gain new insights into how tumor cells are fed
Date:8/7/2011

Philadelphia, PA, August 8, 2011 Researchers have gained a new understanding of the way in which growing tumors are fed and how this growth can be slowed via angiogenesis inhibitors that eliminate the blood supply to tumors. This represents a step forward towards developing new anti-cancer drug therapies. The results of this study have been published today in the September issue of The American Journal of Pathology.

"The central role of capillary sprouting in tumor vascularization makes it an attractive target for anticancer therapy. Our observations suggest, however, that targeting just this mode of blood vessel formation may not be sufficient to result in a significant antitumor effect," commented lead investigators Sndor Paku, PhD, Semmelweis University, Budapest, and Balazs Dome, MD, PhD, Medical University of Vienna.

Investigators from the Semmelweis University, the National Institute of Oncology, and the National Koranyi Institute of Pulmonology, Budapest, Hungary, and the Medical University of Vienna, Vienna, Austria, used electron and confocal microscopy to examine tumor tissue in mice in which malignant tumor cells had been introduced. They proposed a novel mechanism for the development of tissue pillars (the most characteristic feature of intussusceptive angiogenesis, in which a vessel folds into itself to form two vessels). Moreover, they demonstrated a significant increase in pillar formation after treatment with the angiogenesis inhibitor vatalanib. Their observations support the notion that inhibition of just a single tumor vascularization mechanism can trigger alternative ones.

Prior to this study, the mechanism of pillar formation had not been fully understood. Investigation revealed a progression of events that generates a connection between the processes of endothelial bridging and intussusceptive angiogenesis resulting in rapid pillar formation from pre-existing building blocks. To describe this mechanism of pillar formation the group coined the term "inverse sprouting."

"It is well established now that tumors can obtain sufficient blood supply from alternative vascularization mechanisms (such as intussusceptive angiogenesis) to grow without capillary sprouting (known as the key mode of new vessel formation in cancer). Therefore, antiangiogenic therapies should be tailored depending on the angiogenic phenotype in each single tumor, and the targeting of non-sprouting angiogenic mechanisms in cancer seems to be a rational strategy. Our study provides new understanding of cancer-induced intussusceptive angiogenesis and may serve as a basis for the development of novel drugs targeting this type of blood vessel formation."


'/>"/>

Contact: David Sampson
ajpmedia@elsevier.com
215-239-3171
Elsevier Health Sciences
Source:Eurekalert

Related biology news :

1. University of Virginia researchers uncover new catalysis site
2. U of Minnesota researchers discover a natural food preservative that kills food-borne bacteria
3. Researchers develop fully cooked food-aid product
4. U of M researchers use improved imaging technique; discover a better approach to diagnosing epilepsy
5. RUB researchers decipher the molecular basis of blue-green algae
6. Researchers discover the mechanism that determines cell position in the intestinal epithelium
7. Caltech researchers increase the potency of HIV-battling proteins
8. Researchers tap yeasts as source of green surfactants
9. Lawson researchers take control of cancer
10. U researchers look to dogs to better understand intricacies of bone cancer
11. Penn researchers help graft olfactory receptors onto nanotubes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)...  On April 6-7, 2017, Sequencing.com will host the ... hackathon at Microsoft,s headquarters in Redmond, Washington ... developing health and wellness apps that provide a unique, ... is the first hackathon for personal genomics and ... in the genomics, tech and health industries are sending ...
(Date:3/28/2017)... PUNE, India , March 28, 2017 ... (Analog, IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), ... Maintenance), Vertical, and Region - Global Forecast to 2022", ... 30.37 Billion in 2016 and is projected to reach ... 15.4% between 2017 and 2022. The base year considered ...
(Date:3/23/2017)... , March 23, 2017 The report "Gesture Recognition ... Biometric), Industry, and Geography - Global Forecast to 2022", published by MarketsandMarkets, the ... a CAGR of 29.63% between 2017 and 2022. ... ... ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... Alto, CA, USA (PRWEB) , ... October 11, 2017 , ... ... set to take place on 7th and 8th June 2018 in San Francisco, CA. ... policy influencers as well as several distinguished CEOs, board directors and government officials from ...
(Date:10/11/2017)... ... , ... Disappearing forests and increased emissions are the main causes of the ... Especially those living in larger cities are affected by air pollution related diseases. , ... pollution-affected countries globally - decided to take action. , “I knew I had to ...
(Date:10/10/2017)... Los Angeles, CA (PRWEB) , ... ... ... Pharmaceuticals, Inc., a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) ... all uses of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed ...
(Date:10/10/2017)... SANTA CRUZ, Calif. , Oct. 10, 2017 /PRNewswire/ ... SBIR grant from the NIH to develop RealSeq®-SC (Single ... preparation kit for profiling small RNAs (including microRNAs) from ... Cell Analysis Program highlights the need to accelerate development ... "New techniques for ...
Breaking Biology Technology: