Navigation Links
Researchers gain insight into mechanism underlying Huntington's
Date:7/13/2009

LEXINGTON, Ky. (July 13, 2009) Researchers at the University of Kentucky Markey Cancer Center and Graduate Center for Toxicology (GCT) have gained new insight into the genetic mechanisms underlying Huntington's disease and other neurodegenerative or neuromuscular disorders caused by trinucleotide repeats (or TNRs) in DNA.

The research, performed in the laboratory of Dr. Guo-Min Li, UK professor of toxicology and biochemistry and the Madeline James & Edith Gardner Distinguished Chair in Cancer Research, examined the mechanisms involved in the development of a specific type of genetic mutation known as trinucleotide repeat expansions. Diseases associated with these mutations, including Huntington's disease, are called trinucleotide repeat disorders.

Findings were published today in Nature Structural & Molecular Biology (http://www.nature.com/nsmb/index.html). GCT research scientist Caixia Hou, student Nelson Chan, and professor Liya Gu are coauthors of the study.

"Mutations the genetic changes in DNA can lead to many different types of disease, depending on where and in what manner they occur," Li said. "How these genetic changes escape normal DNA repair systems and become ingrained in an affected gene pool leading to familial disorders has been a longstanding subject of study in my laboratory at the UK Medical Center."

The expansion of TNRs at unique sites in the human genome is associated with at least 15 familial, neurodegenerative or neuromuscular disorders. The mechanism of TNR instability is poorly understood. However, because DNA expansions require DNA synthesis, DNA replication and/or DNA repair must be involved.

Two key TNRs, CAG and CTG repeats associated with Huntington's disease and myotonic dystrophy, respectively tend to form hairpin structures via strand slippage in the newly synthesized or "nicked" DNA strand during DNA synthesis associated with DNA replication and/or repair. These hairpin structures are highly thermo-stable and do not "melt" under normal physiologic conditions, and thus they are perceived as "fixed" in the DNA once formed, thereby leading to TNR expansions.

Using an extract of human cells, Li and his colleagues identified a novel DNA repair pathway referred to as DNA hairpin repair (HPR), which specifically targets TNR hairpin removal in the daughter DNA strand, ensuring the fidelity of the TNR sequences in the parental strand. It is proposed that defects or inadequacies in the HPR system may be responsible for TNR instability in the disease state.


'/>"/>

Contact: Keith Hautala
keith.hautala@uky.edu
859-323-6363
University of Kentucky
Source:Eurekalert

Related biology news :

1. Alzheimers disease drug treats traumatic brain injury, report GUMC researchers
2. UTSA infectious disease researchers advancing vaccine against Valley fever
3. Canadian researchers set to study impact of nanomaterials on aquatic ecosystems
4. Ben-Gurion U. researchers reveal connection between cancer and human evolution
5. University of Leicester researchers discover new fluorescent silicon nanoparticles
6. OJ worse for teeth than whitening says Eastman Institute researchers
7. Stanford researchers publish comprehensive model for medical device development
8. Researchers see evidence of memory in the songbird brain
9. Researchers to reveal agings origins on global stage
10. Researchers observe single protein dimers wavering between two symmetrically opposed structures
11. Caltech researchers explore how cells reconcile mixed messages in decisions about growth
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/6/2017)... , May 5, 2017 RAM ... announced a new breakthrough in biometric authentication based ... quantum mechanical properties to perform biometric authentication. These new ... semiconductor material created by Ram Group and its ... entertainment, transportation, supply chains and security. Ram Group ...
(Date:4/17/2017)... 17, 2017 NXT-ID, Inc. (NASDAQ: NXTD ... filing of its 2016 Annual Report on Form 10-K on Thursday ... ... available in the Investor Relations section of the Company,s website at ... website at http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... , Apr. 11, 2017 Research and ... Market 2017-2021" report to their offering. ... The global eye tracking market to grow at a ... report, Global Eye Tracking Market 2017-2021, has been prepared based on ... covers the market landscape and its growth prospects over the coming ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... Oct. 10, 2017 SomaGenics announced the receipt ... to develop RealSeq®-SC (Single Cell), expected to be the ... RNAs (including microRNAs) from single cells using NGS methods. ... need to accelerate development of approaches to analyze the ... "New techniques for measuring levels of mRNAs in ...
(Date:10/10/2017)... ... October 10, 2017 , ... The Pittcon Program ... honoring scientists who have made outstanding contributions to analytical chemistry and ... 2018, the world’s leading conference and exposition for laboratory science, which will be ...
(Date:10/9/2017)... ... 09, 2017 , ... The award-winning American Farmer television series will feature 3 ... airs Tuesdays at 8:30aET on RFD-TV. , With global population estimates nearing ten ... to continue to feed a growing nation. At the same time, many of our ...
(Date:10/9/2017)... Arizona (PRWEB) , ... October 09, 2017 , ... ... Kindred, a four-tiered line of medical marijuana products targeting the needs of consumers ... and packaging of Kindred takes place in Phoenix, Arizona. , As operators of ...
Breaking Biology Technology: