Navigation Links
Researchers find way to make tumor cells easier to destroy
Date:5/6/2008

Tumors have a unique vulnerability that can be exploited to make them more sensitive to heat and radiation, researchers at Washington University School of Medicine in St. Louis report.

The Washington University radiation oncology researchers found that tumors have a built-in mechanism that protects them from heat (hyperthermia) damage and most likely decreases the benefit of hyperthermia and radiation as a combined therapy.

By interfering with that protection, the researchers have shown that tumor cells grown in culture can be made more sensitive to hyperthermia-enhanced radiation therapy. The findings are reported in the May 1, 2008 issue of Cancer Research.

Radiation therapy is a mainstay of cancer treatment but doesn't always completely control tumors. For several years, raising tumor temperature has been investigated as a radiation therapy enhancer with few adverse side effects.

"Past research has shown that hyperthermia is one of the most potent ways to increase cell-killing by radiation," says senior author Tej K. Pandita, Ph.D., associate professor of radiation oncology and of genetics and a researcher with the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital.

"But now we've found that heat also enhances the activity of an enzyme called telomerase in cancer cells," he says. "Telomerase helps protect the cells from stress-induced damage and allows some of them to survive. We used compounds that inhibit telomerase and showed that cancer cells then become easier to destroy with hyperthermia and radiation used in combination."

Telomerase repairs the ends of chromosomes by maintaining stability of specialized cellular structures called telomeres after cells divide. Without telomerase the number of cell divisions is limited. Telomerase is not active in most normal human cells but is active in most cancer cells, which rely on telomerase to continue to proliferate.

In this study, Pandita's research group found that moderately turning up the heat also turns up the activity of telomerase in tumor cells. The researchers found that if they inactivated telomerase and then increased the temperature of tumor cells, more cells were killed by ionizing radiation. Because nearly all cancers have telomerase, drugs that turn off its activity could be useful against many cancers.

The researchers tested three compounds, and one, GRN163L, more strongly inhibited telomerase than the others. Many groups are studying GRN163L as an anticancer therapeutic, and it recently received clearance by the U.S. Food and Drug Administration to enter human phase I/II clinical testing in chronic lymphocytic leukemia. In some preliminary studies, GRN163L has been shown to be additive when used in combination with existing cancer drugs or radiation.

Next, Pandita and colleagues will test the effect of GRN163L on tumors in mice to see if it will enhance the cell-killing effect of hyperthermia and radiation. They are also working to develop chemicals that have heat-like effects to bypass the need to supply a physical heat source to tissue.


'/>"/>

Contact: Gwen Ericson
ericsong@wustl.edu
314-286-0141
Washington University School of Medicine
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/17/2017)... 2017 NXT-ID, Inc. (NASDAQ: NXTD ) ... of its 2016 Annual Report on Form 10-K on Thursday April ... ... in the Investor Relations section of the Company,s website at ... at http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... Research and Markets has announced the addition of the "Global ... ... at a CAGR of 30.37% during the period 2017-2021. ... based on an in-depth market analysis with inputs from industry experts. ... the coming years. The report also includes a discussion of the ...
(Date:4/5/2017)... 2017  The Allen Institute for Cell Science today ... one-of-a-kind portal and dynamic digital window into the human ... first application of deep learning to create predictive models ... and a growing suite of powerful tools. The Allen ... future publicly available resources created and shared by the ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ca (PRWEB) , ... October 12, 2017 , ... ... the Surgical Wound Market with the addition of its newest module, US Hemostats ... $1.2B market for thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic ...
(Date:10/11/2017)... ... 2017 , ... Personal eye wash is a basic first aid supply for any work environment, ... eye do you rinse first if a dangerous substance enters both eyes? It’s one less ... with its unique dual eye piece. , “Whether its dirt and debris, or an acid ...
(Date:10/11/2017)... , ... October 11, 2017 , ... Disappearing forests and ... lives of over 5.5 million people each year. Especially those living in larger cities ... Treepex - based in one of the most pollution-affected countries globally - decided to ...
(Date:10/10/2017)... (PRWEB) , ... October 10, 2017 , ... ... Science Center’s FirstHand program has won a US2020 STEM Mentoring Award. Representatives of ... award for Excellence in Volunteer Experience from US2020. , US2020’s mission is to ...
Breaking Biology Technology: