Navigation Links
Researchers find snippet of RNA that helps make individuals remarkably alike
Date:5/5/2009

"No two people are alike." Yet when we consider the thousands of genes with frequent differences in genetic composition among different people, it is remarkable how much alike we are.

Uniformity, or singleness of form, is not unique to humans but a general property of life. Biologists have long pondered how this feature is produced in the face of such great variation in genetics as well as environmental conditions.

Northwestern University researchers now have identified a type of molecule that plays a specific role in maintaining uniformity: a little snippet of RNA called a microRNA. They found that a microRNA called miR-7 is critical to the robustness of the molecular network that helps regulate uniformity.

The findings are published online by the journal Cell and also are featured in a Cell podcast: http://www.cell.com/. This knowledge could lead to a better understanding of the workings of cancer cells, which do not act in controllable, uniform ways.

The Northwestern research builds on an idea that originated in the 1940's: Molecules within cells of the body work together in networks, each molecule interconnected with others.

"When something is changed, say the genetic sequence of a molecule or the temperature of the organism, the network responds to compensate for the change and keep things intact," said Richard W. Carthew, Owen L. Coon Professor of Molecular Biology in the Weinberg College of Arts and Sciences at Northwestern. Carthew led the research. "This design is similar to the principle that engineers use to design safety features into products."

There are hundreds of different types of microRNAs in animals. Their function is to dampen or shut down the production of proteins in the body. The Carthew group found one of these microRNAs, miR-7, dampens production of proteins that work in the same networks as miR-7.

In a study of Drosophila, when the researchers eliminated miR-7, the networks remained intact but only under uniform environmental conditions. When the researchers perturbed the environment by modulating the temperature, the networks failed to keep things intact, and animals suffered from developmental defects. If the microRNA was present, however, the networks resisted the temperature fluctuation, and animals were normal and healthy.

MicroRNAs, found in all plants and animals, may have evolved as tiny buffers within multicellular organisms to allow the remarkable unity of form in a constantly changing environment.

"This idea has health implications as well," said Carthew. "Cancer cells are notoriously heterogeneous and do not act in controllable ways. Interestingly, microRNAs are among the most frequently mutated targets in cancers, leading some to speculate that their absence is linked to cancer's heterogeneous behavior."


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology news :

1. Stowers researchers develop whole genome sequencing approach for mutation discovery
2. Pfizer supports open access publishing for researchers in low-income countries
3. Genetic secrets of date palm unlocked by researchers at Weill Cornell Medical College in Qatar
4. Researchers identify a molecule that increases the risk of cardiac insufficiency
5. Researchers discover that gene switches on during development of epilepsy
6. Researchers report moderately large potential for red tide outbreak in Gulf of Maine region
7. UT Southwestern researchers probe kidney damage, protection in lupus
8. Researchers use brain interface to post to Twitter
9. TGen researchers discover possible way to block the spread of deadly brain tumors
10. Burnham researchers present at 100th AACR Meeting
11. Yale researchers uncover secrets of salmonellas stealth attack
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/7/2017)... 2017   MedNet Solutions , an innovative SaaS-based ... clinical research, is pleased to announce that the latest ... highly flexible and award winning eClinical solution, is now ... is a proven Software-as-a-Service (SaaS) clinical research technology ... but also delivers an entire suite of eClinical tools ...
(Date:2/7/2017)... 2017 Ipsidy Inc. ( www.ipsidy.com ... IDGS], ("Ipsidy" or the "Company") a provider of secure, ... is pleased to announce the following changes as part ... January 31, 2017, Philip D. Beck was ... President.  An experienced payment industry professional and public company ...
(Date:2/3/2017)... , Feb. 3, 2017  Texas Biomedical Research Institute ... Larry Schlesinger as the Institute,s new President ... Biomed effective May 31, 2017. He is currently the Chair ... of the Center for Microbial Interface Biology at Ohio State ... as the new President and CEO of Texas Biomed," said ...
Breaking Biology News(10 mins):
(Date:2/15/2017)...  Trianni, Inc. („TRIANNI") gab heute bekannt, man ... über die Verwendung der The Trianni Mouse unterschrieben, ... Entdeckung monoklonaler Antikörper. Die Trianni Plattform ... das Janssen den Zugang zu einer ... für die schelle Isolierung vollständig menschlicher Therapeutika optimiert ...
(Date:2/15/2017)... 2017  Vanda Pharmaceuticals Inc. (Vanda) (NASDAQ: VNDA), ... fourth quarter and full year ended December 31, ... for Vanda as we continued to demonstrate strong ... exclusivity for Fanapt," said Mihael H. Polymeropoulos, M.D., ... pipeline with important 2017 milestones underscores Vanda,s commitment ...
(Date:2/15/2017)... Feb. 15, 2017 Windtree Therapeutics, Inc. (Nasdaq: ... developing aerosolized KL4 surfactant therapies for respiratory diseases, will ... presentation) at 8:00 AM EST on Thursday, February 16, ... clinical program, the recently announced closing of a $10.5 ... To participate in the live call and ...
(Date:2/15/2017)... ... February 15, 2017 , ... Diameter Health ... Diameter Health technology in the hands of Lantana analysts. The high-performance platform of ... and public health entities – all those mining value from clinical data – ...
Breaking Biology Technology: