Navigation Links
Researchers find reducing fishmeal hinders growth of farmed fish
Date:5/3/2012

When it comes to the food used to raise fish in aquaculture "farms," it seems that you may get what you pay for. In a new study,* researchers from the National Institute of Standards and Technology (NIST) and the South Carolina Department of Natural Resources (SCDNR) looked at the health effects of raising farmed fish on a diet incorporating less than the usual amount of fishmeala key but expensive component of current commercial fish food products. They learned that reduced fishmeal diets may be cheaper, but the fish were less healthy.

Commercial aquaculture is one of the fastest growing areas of food production, produces about $100 billion of revenue annually and accounts for nearly half of the world's food fish supply. Aquafarmers currently rely heavily on fishmeal as a protein source but it's expensive to produce and the resource from which it's derivedfish captured in the wildis being rapidly depleted. One proposed remedy is to substitute cheaper and more environmentally friendly foods that replace some fishmeal content with other sources of protein.

SCDNR designed a study to evaluate the efficacy of diets with reduced and full amounts of fishmeal fed to cobia**, a popular marine aquaculture fish, during the period when juveniles mature to adults. One diet contained 50 percent and another 75 percent less fishmeal than that found in commercial food products. A third diet contained 100 percent of the conventional fishmeal content. A fourth group of cobia ate off-the-shelf fish food as a control.

To determine whether or not the three experimental diets provided adequate nutrition for fish growth, the SCDNR teamed with NIST's nuclear magnetic resonance (NMR) spectroscopy experts at the Hollings Marine Laboratory (HML) in Charleston, S.C. NMR spectroscopy, a technique similar to magnetic resonance imaging (MRI) used by doctors, allows researchers to isolate and identify specific nutrients after the fish have metabolized thema quantifiable measure of how well or how poorly the different fishmeal diets were utilized.

The results showed that cobia fed the reduced fishmeal diets were metabolically different from those fed either the full fishmeal diet or the control diet. Fish fed the reduced fishmeal diets had higher levels of two metabolites linked to physical stress, tyrosine and betaine, and lower levels of a primary energy source, glucose. This suggests that these cobia were not receiving the necessary nutrition to support healthy growth.

Overall, the researchers were surprised to find that cobia on the experimental 100 percent fishmeal diet showed the most growth by the end of the 100-day study period. Along with more normal tyrosine, betaine and glucose levels, NMR spectroscopy also revealed significantly higher levels of lactate in cobia fed 100 percent fishmeal compared to fish on the other diets. This finding may be explained by the fact that the 100 percent fishmeal experimental diet has the highest percentage of the carbohydrate cornstarch, and lactate is produced by gut bacteria metabolizing carbohydrates. In turn, since efficient breakdown of carbohydrates is essential to energy production, the researchers surmise that a diet enhancing gut microflora activity might be one of the conditions needed for optimal cobia health.

Although the reduced fishmeal diets in this study did not fare well, the NIST and SCDNR researchers say that the data from the NMR-based metabolomic analysis still provide insight into what might be needed for more successful formulations. They expect that future studies will eventually lead to alternative dietary products that are more cost effective, better for the environment and lead to high yields of healthy fish.


'/>"/>

Contact: Michael E. Newman
michael.newman@nist.gov
301-975-3025
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. NC State researchers get to root of parasite genome
2. Researchers find animal with ability to survive climate change
3. Researchers find an essential gene for forming ears of corn
4. Researchers note differences between people and animals on calorie restriction
5. Researchers study acoustic communication in deep-sea fish
6. Researchers discover that growing up too fast may mean dying young in honey bees
7. Researchers study how pistachios may improve heart health
8. UI researchers find potentially toxic substance present in Chicago air
9. Researchers develop new self-training gene prediction program for fungi
10. Case Western Reserve University researchers track Chernobyl fallout
11. Childrens National researchers develop novel anti-tumor vaccine
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers find reducing fishmeal hinders growth of farmed fish
(Date:4/11/2017)... 11, 2017 Crossmatch®, a globally-recognized leader ... today announced that it has been awarded a ... Activity (IARPA) to develop next-generation Presentation Attack Detection ... "Innovation has been a driving force within Crossmatch ... allow us to innovate and develop new technologies ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
(Date:3/30/2017)... , March 30, 2017  On April 6-7, 2017, ... the Genome hackathon at Microsoft,s headquarters in ... competition will focus on developing health and wellness apps ... Hack the Genome is the first hackathon ... The world,s largest companies in the genomics, tech and ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... ... granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator ... osteosarcoma. SBT-100 is able to cross the cell membrane and bind intracellular STAT3 ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... (ADC) therapeutics, today confirmed licensing rights that give it exclusive global access ... developed in collaboration with Children’s Hospital Los Angeles (CHLA). Additionally, an ...
(Date:10/10/2017)... ... , ... Dr. Bob Harman, founder and CEO of VetStem Biopharma, Inc. ... The event entitled “Stem Cells and Their Regenerative Powers,” was held on August ... MPVM was joined by two human doctors: Peter B. Hanson, M.D., Chief of Orthopedic ...
(Date:10/10/2017)... Calif. , Oct. 10, 2017 SomaGenics ... from the NIH to develop RealSeq®-SC (Single Cell), expected ... for profiling small RNAs (including microRNAs) from single cells ... Program highlights the need to accelerate development of approaches ... "New techniques for measuring levels ...
Breaking Biology Technology: