Navigation Links
Researchers find chink in the armor of viral 'tummy bug'

Researchers at Griffith University's Institute for Glycomics in collaboration with colleagues at the University of Melbourne have moved a step closer to identifying a broad spectrum treatment for the dreaded 'viral tummy bug' or rotavirus.

These highly-infectious viruses are the leading cause of severe diarrhoea in young children, responsible for thousands of hospitalisations in the developed world, and hundreds of thousands of deaths each year in developing countries.

Institute Executive Director Professor Mark von Itzstein said research findings published in the world-leading Chemical Biology journal Nature Chemical Biology this week demanded a total rethink of how these viruses work.

"Rotaviruses are thought to infect the bodies by sticking to certain types of sugars called sialic acids on the surface of our stomach cells. They then enter cells and reproduce rapidly, causing illness," he said.

"Rotavirus vaccines are still in their infancy, as problems emerged with the first vaccine that was trialled a number of years ago. While other vaccines are now in clinical use, new directions are required in the development of potential drugs to prevent or treat this deadly virus."

He said that to better understand how carbohydrates are involved in rotavirus infection, researchers had focussed on treating mammalian cells with a protein called sialidase which cuts these surface sugars so the virus cannot attach.

Previous to his group's work most scientists believed only some of the many strains of rotavirus infection could be prevented with sialidase treatment while others were apparently immune to its effects.

This led to the conclusion that some viruses depend on sialic acid to infect the body while others were thought to cause infection independent of sialic acid.

"Unsuccessful attempts to reduce rotavirus infection with this treatment led scientists to group rotaviruses into two classes: 'sialidase-sensitive' and 'sialidase-insensitive' strains," he said.

The team used nuclear magnetic resonance spectroscopy, 3D modelling and cell-based assays to observe the interaction between the virus and host cells.

"We found that a human strain previously through insensitive to sialidase does in fact recognise and bind to sialic acid, but it is a sialic acid not accessible to sialidase treatment." Professor von Itzstein said.

"This reveals that there is a common chink in the armour of these rotaviruses.

"This discovery is the first step in designing a broad-spectrum drug able to exploit this weakness to combat many types of human and animal rotaviruses."


Contact: Jeannette Langan
Research Australia

Related biology news :

1. Biomedical researchers create artificial human bone marrow in a test tube
2. Princeton researchers discover new type of laser
3. UT Southwestern researchers identify gene linked to inherited form of fatal lung disease
4. James Thomson receives 2008 Massry Prize honoring stem cell researchers
5. Researchers push nature beyond its limits to create higher-density biofuels
6. Researchers advance knowledge of little nano-machines in our body
7. No quick or easy technological fix for climate change, researchers say
8. Researchers find natures shut-off switch for cellulose production
9. Researchers compile molecular manual for 100s of inherited diseases
10. Pitt researchers create non-toxic clean-up method for potentially toxic nano materials
11. Researchers identify new anti-tumor gene
Post Your Comments:
(Date:4/19/2016)... DUBAI , UAE, April 20, 2016 ... can be implemented as a compact web-based "all-in-one" system ... in the biometric fingerprint reader or the door interface ... requirements of modern access control systems. The minimal dimensions ... the ID readers into the building installations offer considerable ...
(Date:4/13/2016)... 2016  IMPOWER physicians supporting Medicaid patients in ... clinical standard in telehealth thanks to a new partnership ... platform, IMPOWER patients can routinely track key health measurements, ... index, and, when they opt in, share them with ... a local retail location at no cost. By leveraging ...
(Date:3/23/2016)... Massachusetts , March 23, 2016 /PRNewswire/ ... im Interesse erhöhter Sicherheit Gesichts- und Stimmerkennung ... Xura, Inc. (NASDAQ: MESG ), ... bekannt, dass das Unternehmen mit SpeechPro zusammenarbeitet, ... aus der Finanzdienstleistungsbranche, wird die Möglichkeit angeboten, ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016   Ginkgo Bioworks , a ... engineering, was today awarded as one of the ... the world,s most innovative companies. Ginkgo Bioworks is ... the real world in the nutrition, health and ... directly with customers including Fortune 500 companies to ...
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita Politecnica delle ... people with peritoneal or pleural mesothelioma. Their findings are the subject of a new ... , Diagnostic biomarkers are signposts in the blood, lung fluid or tissue of mesothelioma ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
(Date:6/23/2016)... SANTA MONICA, Calif. , June 23, 2016  The Prostate Cancer ... to pioneer increasingly precise treatments and faster cures for prostate cancer. Members of ... 77 institutions across 15 countries. Read More About the ... ... ...
Breaking Biology Technology: