Navigation Links
Researchers find an essential gene for forming ears of corn

Cold Spring Harbor Laboratory (CSHL) professor David Jackson, Ph.D., and a team of plant geneticists have identified a gene essential in controlling development of the maize plant, commonly known in the United States as corn. The new research extends the growing biological understanding of how the different parts of maize arise--important information for a plant that is the most widely planted crop in the U.S. and a mainstay of the global food supply.

The researchers found that a gene called sparse inflorescence1, or spi1, is involved the maize plant's synthesis of the growth hormone auxin. This chemical messenger is familiar to biology students, who learn that it is produced by the tip of a growing shoot. When the hormone is applied to only one side of the shoot, that side grows faster, causing the tip to bend.

In a much more complex process, auxin also helps to shape structures such as leaves or the female organs (ears) and male organs (tassels) of corn. The initial stages of these structures are called meristems, which consist of versatile, undifferentiated cells analogous to the stem cells found in animals. Jackson and colleagues from UC San Diego, including Andrea Gallavotti who spent one year in Jackson's lab to perform some of this work, and at California State University at Long Beach and Pennsylvania State University, found that meristems emerge from an interplay between the synthesis of auxin by various cells and its motion between them. Disrupting either its production (by causing a mutation in the spi1 gene) or its motion results in stunted, defective organs.

Eudicots vs. Monocots

Much has been learned in the past about organ development in the cress plant known as Arabidopsis, which biologists regard as a "model organism" for plant research, much as the lab mouse has served as a model for research on mammalian biology. Arabidopsis is in a plant group called eudicots, however, while maize and many other food crops belong to a group known as monocots. The spi1 gene has cousins that affect auxin synthesis and organ formation in Arabidopsis, but there are important differences.

"In maize, spi1 mutations cause severe developmental effects, which is not the case in Arabidopsis, which we demonstrated by deleting, or 'knocking-out,' genes similar to spi1," Jackson explained. "Our work helped demonstrate that spi1 in maize has evolved a dominant role in auxin biosynthesis, and is essential for what we plant scientists call inflorescence development--the process in seed plants in which a shoot forms that supports the plant's flowers," he added.

"When we looked at the interaction between spi1 and genes of the plant that regulate auxin transport, we found, interestingly, that the transport of auxin and biosynthesis work together in a synergistic manner to regulate how the meristem and lateral organs of the maize plant develop."


Contact: Peter Tarr
Cold Spring Harbor Laboratory

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
(Date:11/19/2015)... NEW YORK , Nov. 19, 2015  Although ... the market is dominated by a few companies, according ... Qiagen. These companies own 51% of the market share of ... report, The World Market for Molecular Diagnostic ... "The market is still controlled by one ...
(Date:11/17/2015)... , November 17, 2015 ... 19 novembre  2015.  --> Paris , ... --> DERMALOG, le leader de l,innovation biométrique, a ... fois passeports et empreintes sur la même surface de ... passeports et l,autre pour les empreintes digitales. Désormais, un ...
(Date:11/12/2015)... , Nov. 12, 2015  A golden retriever ... Duchenne muscular dystrophy (DMD) has provided a new lead ... Children,s Hospital, the Broad Institute of MIT and Harvard ... Brazil . Cell, pinpoints ... dogs "escape" the disease,s effects. The Boston Children,s lab ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... SAN DIEGO , Nov. 25, 2015 ... that management will participate in a fireside chat discussion ... New York . The discussion is ... Time. .  A replay will ... Contact:  Media Contact:McDavid Stilwell  , Julie NormartVP, Corporate ...
(Date:11/24/2015)... ... 24, 2015 , ... The United States Golf Association (USGA) today announced Dr. ... Award. Presented annually since 1961, the USGA Green Section Award recognizes an individual’s distinguished ... , Clarke, of Iselin, N.J., is an extension specialist of turfgrass pathology in ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... metabolism. But unless it is bound to proteins, copper is also toxic to ... researchers at Worcester Polytechnic Institute (WPI) will conduct a systematic study of copper ...
(Date:11/24/2015)... --> --> ... Synthesis Market by Product & Services (Primer, Probe, Custom ... RNAi), End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) - ... is expected to reach USD 1,918.6 Million by 2020 ... of 10.1% during the forecast period. Browse ...
Breaking Biology Technology: