Navigation Links
Researchers explore plankton's shifting role in deep sea carbon storage

SAN FRANCISCO, Oct. 13, 2011 -- The tiny phytoplankton Emiliania huxleyi, invisible to the naked eye, plays an outsized role in drawing carbon from the atmosphere and sequestering it deep in the seas. But this role may change as ocean water becomes warmer and more acidic, according to a San Francisco State University research team.

In a study published this week in the journal Global Change Biology, SF State Assistant Professor of Biology Jonathon Stillman and colleagues show how climate-driven changes in nitrogen sources and carbon dioxide levels in seawater could work together to make Emiliania huxleyi a less effective agent of carbon storage in the deep ocean, the world's largest carbon sink.

Changes to this massive carbon sink could have a critical effect on the planet's future climate, Stillman said, especially as atmospheric carbon dioxide levels continue to rise sharply as a result of fossil fuel burning and other human activities.

While floating free in the sunny top layers of the oceans, the phytoplankton develop elaborate plates of calcified armor called coccoliths. The coccoliths form a hard and heavy shell that eventually sinks to the ocean depths. "About 80 percent of inorganic carbon trapped down there is from coccoliths like these," said Stillman.

Stillman and his colleagues wanted to discover how ocean acidification and changes in the ocean's nitrogen cycleboth hallmarks of climate warmingmight effect coccolith development. So they raised more than 200 generations of Emiliania huxleyi in the lab, adjusting carbon dioxide levels and the type of nitrogen in the phytoplankton's seawater bath.

They found that high levels of carbon dioxidewhich make the water more acidicalong with a shift in the prevailing nitrogen type from nitrates to ammonium"had a synergistic effect" on the phytoplankton's biology and growth.

In particular, coccoliths formed under conditions of high carbon dioxide and high ammonium levels were incomplete or hollow, and contained less than the usual amount of inorganic carbon, the researchers noted.

"The ratio of inorganic to organic carbon is important," Stillman explained. "As inorganic carbon increases, it adds more ballast to the hard shell, which makes it sink and makes it more likely to be transported to the deep ocean. Without this, the carbon is more likely to be recycled into the Earth's atmosphere."

"Our results suggest in the future there will be overall lower amounts of calcification and overall lower amount of transport of carbon to the deep ocean," he added.

Emiliania huxleyi typically use nitrates to make proteins, but this form of nitrogen may be in shorter supply for the phytoplankton as the world's oceans grow warmer and more acidic, Stillman and colleagues suggest. In the open ocean, nitrates are upwelled from deep waters, but a thickening layer of warmer surface water could inhibit this upwelling. At the same time, the warmer temperatures favor bacteria that turn recycled nitrogen from surface waters and the atmosphere into ammonium, and acidification inhibits the bacteria that turn ammonium into nitrate.

"It is likely that in the future, the ocean surface will contain more ammonium," which the phytoplankton will assimilate instead of nitrates, Stillman suggested. "Metabolizing nitrogen as ammonium versus nitrates requires different biochemical constituents that impact how well the cells make their coccoliths. They will survive just fine, but their biology will be different as a result."

The study by Stillman and colleagues is the first to look at the intertwined effects of ocean acidification and changes in nitrogen on phytoplankton like Emiliania huxleyi. It's also one of the first studies to observe these effects continuously over a long time scale, "so the responses of the phytoplankton are likely what we'll see in the ocean itself," Stillman said.

Stephane Lefebrve, the SF State postdoctoral student who developed the experiments for the study, said he is now looking for phytoplankton genes that "will help us to build the genetic blueprint of their responses to elevated carbon dioxide and a nitrogen source"


Contact: Nan Broadbent
San Francisco State University

Related biology news :

1. Stanford researchers examine impact of green politics on recent national elections
2. NIH grant will allow researchers to look for viral cause of most severe form of multiple sclerosis
3. UNH researchers receive NSF grant to scale up stream ecology
4. Medical College of Wisconsin researchers show molecule inhibits metastasis
5. Researchers study agings effect on the brain
6. Notre Dame researchers report progress on compound to treat neurological diseases
7. UNH researchers: Multibeam sonar can map undersea gas seeps
8. Researchers realize high-power, narrowband terahertz source at room temperature
9. Researchers: Apply public trust doctrine to rescue wildlife from politics
10. Dead Sea researchers discover freshwater springs and numerous micro-organisms
11. Eating balanced meals, farm-fresh produce benefits families, communities, nutrition researchers say
Post Your Comments:
(Date:11/17/2015)... Pressure BioSciences, Inc. (OTCQB: PBIO) ("PBI" and ... of broadly enabling, pressure cycling technology ("PCT")-based sample preparation ... it has received gross proceeds of $745,000 from an ... "Offering"), increasing the total amount raised to date in ... are expected in the near future. ...
(Date:11/12/2015)...  Arxspan has entered into an agreement with ... use of its ArxLab cloud-based suite of biological ... will support the institute,s efforts to electronically manage ... internally and with external collaborators. The ArxLab suite ... Institute,s electronic laboratory notebook, compound and assay registration, ...
(Date:11/10/2015)... Nov. 10, 2015  In this report, ... basis of product, type, application, disease indication, ... this report are consumables, services, software. The ... safety biomarkers, efficacy biomarkers, and validation biomarkers. ... are diagnostics development, drug discovery and development, ...
Breaking Biology News(10 mins):
(Date:12/1/2015)...  CardioCell LLC, a Stemedica Cell Technologies Inc. ... indications, intends to proceed with finalizing a Phase ... a Heart Failure Advisory Board comprising cardiology key ... members . In a recent meeting members of ... efficacy data from CardioCell,s on-going chronic heart failure ...
(Date:12/1/2015)... Frederick, MD (PRWEB) , ... December 01, 2015 ... ... management solutions provider, announces that its best selling system laboratory animal colony management ... ezColony® Cloud today, without investing in on-site IT resources., , ...
(Date:12/1/2015)... SAN FRANCISCO , Dec. 1, 2015  Symic, ... and affect the extracellular matrix (ECM), today announced that ... financing to advance the company,s pipeline, including its lead ... Lilly Ventures and includes the participation by all existing ... new funding brings the total capital raised by Symic ...
(Date:12/1/2015)... , December 1, 2015 Dr. Harry Lander , President ... serving as Chief Science Officer and recruits five ... Harry Lander , President of Regen, expands his role to ... recruits five distinguished scientists to join advisory team ... expands his role to include serving as ...
Breaking Biology Technology: