Navigation Links
Researchers examine role of soil patterns in dam restoration
Date:12/3/2008

MADISON Looking at the site today, it's easy to forget that a dam and pond stood for 43 years on the University of Wisconsin-Madison's Franbrook Farm Research Station in southwestern Wisconsin. All traces of the structure are gone, and acres of plants, both native and weedy, now carpet the floor of the former basin.

Nevertheless, memories of the dam remain, and by digging into the soils of the basin, UW-Madison researchers are now unearthing them. Writing in a special issue (December) of Restoration Ecology, they report the discovery of two superimposed patterns of soil properties that chronicle distinct stages in the basin's history: its decades of submersion, and its emptying when the dam was breached and removed.

"In our analysis, we were able to pick up those different soil patterns, which was pretty exciting," says soil science professor Nick Balster, who led the study with doctoral candidate Ana Wells and landscape architecture professor John Harrington. "We could see the chemical and physical patterns that were created both by the inundation (of the land) and by the draining."

Fascinating as those traces of the past are, however, what they mean for the future is the real question, Balster says. After seeding the basin with prairie species, the scientists are now waiting to see if the soil patterns affect the growth and distribution of the plants, and their ability to stand up against weedy, invasive competitors.

"By doing this research, we're asking the question, 'How much do soils matter in the restoration of these basins?'" Balster says. "As people who love to study soil we're going to say, 'A lot! Soils likely drive the whole thing.' But as scientists, we don't know yet."

Answering that question is becoming more and more pressing. During the past three decades, hundreds of dams nationwide have reached the end of their lives, forcing dam owners to make costly repairs or increasingly to remove the structures. With some 3,800 dams to its name or as many as 10,000, if small, unregulated structures are counted Wisconsin leads the nation in total dams and has pulled more than 130. States such as California, Pennsylvania and Tennessee have taken out scores of dams as well.

The trend toward removal rather than repair has been driven in part by anglers and river enthusiasts, who justifiably welcome the return the free-flowing rivers and cold-water streams. But the outcome for the once-flooded lands is less certain. Many reports suggest they become havens for aggressive, invading plants such as reed canary grass, which has already consumed hundreds of thousands of acres in Wisconsin and other states.

The researchers' work at Franbrook Farm, where the Beers Dam was removed in 2003, has now begun to yield some intriguing clues as to why this might be. For one, the scientists found fundamental differences in nutrient levels and physical structure between the knee-deep sediments that were deposited over the dam's lifetime and the original soils buried beneath. Most striking, they say, is how uniform the spatial composition of the sediments is when compared to the patchy structure of buried soils. And this lack of chemical and physical variability might be one reason why weeds tend to thrive.

"Because you don't have the patterns of heterogeneity that allow diverse plant communities to establish, invasive species can come in and move quickly through the area," says Harrington.

At the same time, the sediments also contained definite gradients in density, moisture and other factors, which were laid down when the dam was breached. Finer sediments, for instance, were picked up by the rushing waters and carried closer to the spot where the dam once stood, while heavier, coarser particles tended to move less and settle farther out.

These gradients in particle size also dictate how some nutrients are distributed on the landscape, says Balster. For example, the team found higher concentrations of phosphorus, which binds preferentially to fine particles, closer to the dam's former location than farther away.

The scientists' next goal is to figure out what all this means for their prairie restoration which isn't to say they're rooting necessarily for the native plants.

"If we wanted to, with the expertise on our team, we could likely achieve a restoration of this site, by, say, removing the sediments," says Balster. "But we're interested in studying the drivers for restoration. We want to understand the process both above and belowground."


'/>"/>

Contact: Nick Balster
njbalster@wisc.edu
608-263-5719
University of Wisconsin-Madison
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
(Date:4/15/2016)...  A new partnership announced today will help ... in a fraction of the time it takes ... life insurance policies to consumers without requiring inconvenient ... Diagnostics, rapid testing (A1C, Cotinine and HIV) and ... weight, pulse, BMI, and activity data) available at ...
(Date:3/31/2016)... 2016   LegacyXChange, ... "Company") LegacyXChange is excited to release its ... to be launched online site for trading 100% guaranteed ... will also provide potential shareholders a sense of the ... an industry that is notorious for fraud. The video ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... On Wednesday, June 22, 2016, the ... the Dow Jones Industrial Average edged 0.27% lower to finish ... 0.17%. Stock-Callers.com has initiated coverage on the following equities: Infinity ... NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ... ). Learn more about these stocks by accessing their free ...
(Date:6/23/2016)... ... June 23, 2016 , ... Regulatory Compliance ... consulting, provides a free webinar on Performing Quality Investigations: Getting to ... 12pm CT at no charge. , Incomplete investigations are still a major concern ...
(Date:6/23/2016)... FRANCISCO , June 22, 2016  Amgen (NASDAQ: ... sponsorship of the QB3@953 life sciences incubator ... human health. The shared laboratory space at QB3@953 was ... overcome a key obstacle for many early stage organizations ... part of the sponsorship, Amgen launched two "Amgen Golden ...
(Date:6/22/2016)... 22, 2016 Cell Applications, Inc. and ... to produce up to one billion human induced ... one week. These high-quality, consistent stem cells enable ... and spend more time doing meaningful, relevant research. ... high-volume manufacturing process that produces affordable, reliable HiPSC ...
Breaking Biology Technology: