Navigation Links
Researchers disprove 15-year-old theory about the nervous system
Date:2/3/2009

COLUMBIA, Mo. A delay in traffic may cause a headache, but a delay in the nervous system can cause much more. University of Missouri researchers have uncovered clues identifying which proteins are involved in the development of the nervous system and found that the proteins previously thought to play a significant role, in fact, do not. Understanding how the nervous system develops will give researchers a better understanding of neurological diseases, such as multiple sclerosis and Charcot-Marie-Tooth disorders.

"Speed is the key to the nervous system," said Michael Garcia, investigator in the Christopher S. Bond Life Sciences Center and assistant professor of biological sciences in the MU College of Arts and Science. "The peripheral nervous system 'talks' to muscles through nerve impulses in response to external stimuli. When babies are born, they do not have fully developed nervous systems, and their systems run slower. Eventually, the nervous system matures. Our study tried to understand that maturation process."

The process of nerve cells maturation is called myelination. During myelination, a layer of myelin (electrically insulating material) wraps or forms around the axons (part of the nerve cell that conducts electrical impulses). Nerve impulses travel faster in myelinated nerve cells.

"Myelination is important for signal transmission because it increases nerve conduction velocity," Garcia said. "The relationship between axons and myelinating cells is a reciprocal one, with each cell type sending and receiving signals from the other cell. One signal originates from myelinating cells and results in a large increase in axonal diameter."

When nerve cells are unmyelinated, the axon has a smaller diameter and contains neurofilaments that are less modified and are more compact. Neurofilaments are a group of proteins that are essential for diameter growth. The protein group includes neurofilament subunits that are classified as light, medium and heavy. Loss of all neurofilaments in the axon results in myelinated axons with slowed conduction velocities.

For the last 15 years, the proposed underlying mechanism for an axon's diameter growth has focused on myelin-dependent modification of regions of neurofilaments that are located within the heavy and medium subunits. In a previous study, genetically removing the region of the medium subunit that is modified impaired growth and slowed nerve conduction. However, this did not directly test if the proposed modification was required as a much larger region was genetically removed. In the current study, researchers genetically altered the neurofilament medium subunit such that it could no longer be modified in response to myelination. Surprisingly, Garcia found that prevention of what was thought to be an extremely important modification did not affect axonal diameter.

"It is now clear that the basic mechanism for how neurofilaments affect axonal diameters remains unanswered," Garcia said. "This discovery introduces a lot of new questions."


'/>"/>

Contact: Kelsey Jackson
JacksonKN@missouri.edu
573-882-8353
University of Missouri-Columbia
Source:Eurekalert

Related biology news :

1. Caltech researchers help unlock the secrets of gene regulatory networks
2. Researchers find pathway and enzyme unique to tularemia organism
3. TGen and ASU researchers find drug that could reduce risk of Alzheimers
4. LSUSHC researchers find potential new target for hypertension treatment
5. UT Southwestern researchers disrupt biochemical system involved in cancer, degenerative disease
6. What we don’t know still hurts us, environmental researchers warn
7. Researchers unzip molecules to measure interactions keeping DNA packed in cells
8. Researchers may have found why women have an edge on salt-sensitive hypertension
9. Researchers identify new function of protein in cellular respiration
10. Natural brain substance blocks weight gain in mice, UT Southwestern researchers discover
11. Researchers identify a cell type that limits stroke damage
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... and BANGALORE, India , April ... EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... today announced a global partnership that will provide ... to use mobile banking and payment services.      ... a key innovation area for financial services, but it also ...
(Date:4/26/2016)... 2016 Research and Markets has ... Market 2016-2020"  report to their offering.  , ,     ... The analysts forecast the global multimodal biometrics market ... the period 2016-2020.  Multimodal biometrics is ... as the healthcare, BFSI, transportation, automotive, and government ...
(Date:4/15/2016)... 2016 Research and Markets has ... Market 2016-2020,"  report to their offering.  , ... ,The global gait biometrics market is expected to ... period 2016-2020. Gait analysis generates multiple ... used to compute factors that are not or ...
Breaking Biology News(10 mins):
(Date:5/26/2016)... May 26, 2016 Despite the volatility ... in this space. Today,s pre-market research on ActiveWallSt.com directs the ... Inc. (NASDAQ: RDUS ), Cerus Corp. (NASDAQ: ... ), and Five Prime Therapeutics Inc. (NASDAQ: FPRX ... at: http://www.activewallst.com/ On Wednesday, ...
(Date:5/25/2016)... ... May 25, 2016 , ... Thailand’s Board of ... 2016 in San Francisco. Located at booth number 7301, representatives from the Thai ... and discuss the Thai biotechnology and life sciences sector. , Deputy Secretary ...
(Date:5/25/2016)... ... 2016 , ... WEDI, the nation’s leading authority on the use of health ... has been named by the WEDI Board of Directors as WEDI’s president and CEO. ... with more than 35 years of experience in healthcare, association management and organizational leadership, ...
(Date:5/24/2016)... ... , ... Last week, Callan Capital, an integrated wealth management firm specializing in ... San Diego Life Science event at the Estancia La Jolla Resort and Spa. , ... speakers Dr. Rich Heyman, former CEO of Aragon and Seragon, and Faheem Hasnain, former ...
Breaking Biology Technology: