Navigation Links
Researchers discover workings of brain's 'GPS system'

Just as a global positioning system (GPS) helps find your location, the brain has an internal system for helping determine the body's location as it moves through its surroundings.

A new study from researchers at Princeton University provides evidence for how the brain performs this feat. The study, published in the journal Nature, indicates that certain position-tracking neurons called grid cells ramp their activity up and down by working together in a collective way to determine location, rather than each cell acting on its own as was proposed by a competing theory.

Grid cells are neurons that become electrically active, or "fire," as animals travel in an environment. First discovered in the mid-2000s, each cell fires when the body moves to specific locations, for example in a room. Amazingly, these locations are arranged in a hexagonal pattern like spaces on a Chinese checker board.

"Together, the grid cells form a representation of space," said David Tank, Princeton's Henry L. Hillman Professor in Molecular Biology and leader of the study. "Our research focused on the mechanisms at work in the neural system that forms these hexagonal patterns," he said. The first author on the paper was graduate student Cristina Domnisoru, who conducted the experiments together with postdoctoral researcher Amina Kinkhabwala.

Domnisoru measured the electrical signals inside individual grid cells in mouse brains while the animals traversed a computer-generated virtual environment, developed previously in the Tank lab. The animals moved on a mouse-sized treadmill while watching a video screen in a set-up that is similar to video-game virtual reality systems used by humans.

She found that the cell's electrical activity, measured as the difference in voltage between the inside and outside of the cell, started low and then ramped up, growing larger as the mouse reached each point on the hexagonal grid and then falling off as the mouse moved away from that point.

This ramping pattern corresponded with a proposed mechanism of neural computation called an attractor network. The brain is made up of vast numbers of neurons connected together into networks, and the attractor network is a theoretical model of how patterns of connected neurons can give rise to brain activity by collectively working together. The attractor network theory was first proposed 30 years ago by John Hopfield, Princeton's Howard A. Prior Professor in the Life Sciences, Emeritus.

The team found that their measurements of grid cell activity corresponded with the attractor network model but not a competing theory, the oscillatory interference model. This competing theory proposed that grid cells use rhythmic activity patterns, or oscillations, which can be thought of as many fast clocks ticking in synchrony, to calculate where animals are located. Although the Princeton researchers detected rhythmic activity inside most neurons, the activity patterns did not appear to participate in position calculations.


Contact: Catherine Zandonella
Princeton University

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
3. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
4. UNH researchers find African farmers need better climate change data to improve farming practices
5. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
6. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
7. Researchers print live cells with a standard inkjet printer
8. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
9. Researchers reveal how a single gene mutation leads to uncontrolled obesity
10. Researchers discover novel therapy for Crohns disease
11. New paper by Notre Dame researchers describes method for cleaning up nuclear waste
Post Your Comments:
Related Image:
Researchers discover workings of brain's 'GPS system'
(Date:6/2/2016)... 2016 The Department of Transport Management ... 44 million US Dollar project, for the , ... Personalization, Enrolment, and IT Infrastructure , to ... and implementation of Identity Management Solutions. Numerous renowned international vendors ... Decatur was selected for the most compliant and ...
(Date:5/24/2016)... patient care by providing unparalleled technology to leaders of the medical imaging industry.  As ... added to the range of products distributed by Ampronix. Photo - ... ... ... ...
(Date:5/9/2016)... Elevay is currently known as ... for high net worth professionals seeking travel for work ... world, there is still no substitute for a face-to-face ... your deal with a firm handshake. This is why ... of citizenship via investment programs like those offered by ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 23, 2016   Boston Biomedical , an ... designed to target cancer stemness pathways, announced that ... Orphan Drug Designation from the U.S. Food and ... cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin is ... inhibit cancer stemness pathways by targeting STAT3, and ...
(Date:6/23/2016)... Calif. , June 23, 2016  The Prostate Cancer Foundation ... increasingly precise treatments and faster cures for prostate cancer. Members of the Class ... across 15 countries. Read More About the Class of ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... In a new case report published ... how a patient who developed lymphedema after being treated for breast cancer benefitted from ... the paradigm for dealing with this debilitating, frequent side effect of cancer treatment. ...
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, the only ... Center and will showcase its product’s latest features from June 26 to June ... scientific poster on Disrupting Clinical Trials in The Cloud during the conference. ...
Breaking Biology Technology: