Navigation Links
Researchers discover weak link in Alzheimer's drug candidates

Some current therapies being investigated for Alzheimer's disease may cause further neural degeneration and cell death, according to a breakthrough discovery by UC San Diego researchers. By combining three dimensional computer simulations with high resolution atomic force microscopy membrane protein and cell imaging, electrical recording and various cellular assays, UCSD nano-biophysicist Ratnesh Lal and his colleagues investigated the structure and function of truncated peptides, known as nonamyloidgenic peptides, formed by some Alzheimer's drug candidates. The researchers found that the nonamyloidgenic peptides formed active ion channels that caused the cells to take in very high levels of calcium ions, which damaged synaptic efficiency and eventually killed neurons, neurons that are linked to memory loss in human brain.

As a result of their current findings and related previous work, Lal and his colleagues believe that aggregate-forming amyloidogenic peptides promote neurological diseases by forming holes or channels in cell membranes, disturbing ionic homeostasis by allowing unwanted ion flow in-and-out of cells, and most importantly allowing toxic amounts of calcium ions into neural cells. Truncated, shorter non-amyloidogenic peptide fragments that also form ion channels and alter neuronal viability, are assumed by biomedical researchers to be non-toxic and are currently targeted to treat Alzheimer's disease patients. Details of their research were recently published in a paper entitled "Truncated β-amyloid peptide channels provide an alternative mechanism for Alzheimer's Disease and Down syndrome" in the Proceedings of the National Academy of Sciences.

"There are several drugs to treat Alzheimer's in Trials I and II, but we don't believe that they will be adopted for clinical usage," said Lal, a joint professor in the UCSD Jacobs School of Engineering's Department of Mechanical and Aerospace Engineering and Bioengineering. We believe we are providing the most direct mechanism of Alzheimer's disease and Down Syndrome pathology. Through our research we have provided a structure and mechanism (an ion channel) that can account for the pathology. The strategy to control the activity of this structure the opening and closing of the channel should be targeted for an effective treatment."

Lal and his colleagues are now working on a 3D structural model of the ion channel using their data to identify the domains (or sites) of the channel for designing effective therapeutics. Lal said the use of advanced nanotechnology and biology combined with a multi disciplinary approach, aided in the researchers' breakthrough discovery.

"Without advances in technology and a multi disciplinary approach this kind of complex research would not move forward," said Lal, a trained physicist and neurobiologist who joined the UCSD faculty in January 2010 from the University of Chicago. ""My goal is to provide practical solutions for effective human health management using advances in nanoscience and technology with a multidisciplinary and multi-scale (nano-to-translational) integrated approach," he added.


Contact: Andrea Siedsma
University of California - San Diego

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
Related Image:
Researchers discover weak link in Alzheimer's drug candidates
(Date:5/12/2016)... -- , a brand of Troubadour Research ... the Q1 wave of its quarterly wearables survey. A ... to a program where they would receive discounts for ... "We were surprised to see that so ... , CEO of Troubadour Research, "primarily because there are ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 Apellis ... Phase 1 clinical trials of its complement C3 ... single and multiple ascending dose studies designed to ... (PD) of subcutaneous injection in healthy adult volunteers. ... (SC) either as a single dose (ranging from ...
(Date:6/23/2016)... 23, 2016 Andrew ... Published recently in ... journal from touchONCOLOGY, Andrew D Zelenetz , ... cancer care is placing an increasing burden on ... biologic therapies. With the patents on many biologics ...
(Date:6/23/2016)... San Francisco, CA (PRWEB) , ... June 23, ... ... capture (EDC) software, is exhibiting at the Pennsylvania Convention Center and will showcase ... DIA Annual conference. ClinCapture will also be presenting a scientific poster on Disrupting ...
(Date:6/23/2016)... Connecticut (PRWEB) , ... June 23, 2016 , ... ... introduce a new line of intelligent tools designed, tuned and optimized exclusively for ... September 12–17 in Chicago. The result of a collaboration among several companies with ...
Breaking Biology Technology: