Navigation Links
Researchers discover the structural alphabet of RNA
Date:3/6/2008

This release is available in French.

A team of bioinformaticians at the Universit de Montral (UdeM) report in the March 6th edition of Nature the discovery of a structural alphabet that can be used to infer the 3D structure of ribonucleic acid (RNA) from sequence data, providing new tools to understand the role of this important class of cellular regulators.

The folding of a single-stranded RNA molecule is determined by the interactions between its constituent nucleotides. The classical approach to RNA modelling suffers from an important limitation: it only takes into account the canonical Watson-Crick interactions A:U and G:C, that is those where the nucleotides are facing each other. The non-canonical Hoogsteen and sugar interactions, those where the nucleotides are side by side or on top of each other, are not taken into account by conventional modelling algorithms. The result can be incomplete or erroneous models which can mislead researchers.

The attempt to remedy this problem led Franois Major, principal investigator at the Institute for Research in Immunology and Cancer of the UdeM and professor in the Department of Computer Science and Operations Research and Marc Parisien, a graduate student in his laboratory, to propose a radically different approach to model RNA structure. Their idea: assemble the structure in silico starting from motifs that combine all the possible interactions between a nucleotide and its neighbors.

The researchers implemented a first algorithm, MC-Fold, that systematically assigns the different motifs to each segment of the sequence and selects the most probable pair based on its frequency in known structures. A second algorithm, MC-Sym, then assembles the set of selected motifs, taking into account the constraints that are found in known structures.

"We introduced a new first-order object to represent nucleotide relationships, the nucleotide cyclic motif (NCM). We reasoned that using NCMs could allow us to arrive at better models of the 3D structure of RNA molecules, " explains Franois Major. "Compared to the thermodynamic approach, our algorithms make less false positives and negatives and predict structures that are closer to the empirical data in the case of sequences for which it is available. The improvement is due to the fact that NCMs incorporate more base-pairing context-dependent information."

The biological importance of RNA and the growing recognition of its therapeutic potential mean that the new modelling algorithms have many applications in biomedical research. For instance, Major and Parisien have shown that these tools can be used to study the biology of RNA viruses such as HIV. They have also used the MC-Fold:MC-Sym pipeline to identify microRNAs, an important class of regulatory molecules which is currently the focus of intense investigation. microRNAs inhibit target genes both efficiently and specifically and are often considered to be the next generation of therapeutic agents. Since microRNAs are notoriously difficult to identify based on sequence alone, the use of RNA modelling algorithms and structural features to do so represents an important breakthrough.


'/>"/>

Contact: Christian Lanctt
christian.lanctot@umontreal.ca
514-343-7770
University of Montreal
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/15/2016)... York , March 15, 2016 ... market report published by Transparency Market Research "Digital Door Lock ... and Forecast 2015 - 2023," the global digital door lock ... 731.9 Mn in 2014 and is forecast to grow at ... Growth of micro, small and medium enterprises (MSMEs) across the ...
(Date:3/11/2016)... PUNE, India , March 11, 2016 ... to a new market research report "Image Recognition Market ... by Application (Marketing and Advertising), by Deployment Type (On-Premises ... Global Forecast To 2022", published by MarketsandMarkets, the global ... in 2015 to USD 29.98 Billion by 2020, at ...
(Date:3/9/2016)... BEACH GARDENS, Fla. , March 9, 2016 ... identity management authentication and enrollment solutions, today announced ... DigitalPersona ® Altus multi-factor authentication ... IT and InfoSec managers to step-up security where ... Washington, DC . ...
Breaking Biology News(10 mins):
(Date:4/28/2016)... , ... April 28, 2016 , ... ... will deliver a talk on its first-in-class technologies for tissue stem cell ... Meeting on RNAiMicroRNA Biology to Reprogramming & CRISPR-based Genome Engineering in Burlington, ...
(Date:4/28/2016)... ... April 28, 2016 , ... Morris ... open house for regional manufacturers at its Maple Grove, Minnesota technical center, May ... Group, Chiron and Trumpf. Almost 20 leading suppliers of tooling, accessories, software ...
(Date:4/27/2016)... ... ... Shimadzu Scientific Instruments (SSI) will be showcasing a broad ... Expo. Shimadzu’s high-performance instruments enable laboratories to test cannabis products for potency, moisture, ... booth 1021 to learn how Shimadzu’s instruments can help improve QA/QC testing, peak ...
(Date:4/27/2016)... New York, NY (PRWEB) , ... April 27, ... ... without realizing it. Touch screen mobile devices with fingerprint recognition for secure ... image libraries are only a few ways consumers are interacting with biometrics technology ...
Breaking Biology Technology: