Navigation Links
Researchers discover potential cause of chronic painful skin
Date:6/8/2011

June 6, 2011 (Rensselaer, N.Y., USA) A new study may explain why only 50% of patients experiencing chronic nerve pain achieve even partial relief from existing therapeutics. The study, published in the June 6 online version of the international research journal PAIN, reveals that certain types of chronic pain may be caused by signals from the skin itself, rather than damage to nerves within the skin, as previously thought.

A Medical Mystery

For years, researchers have known that increased amounts of a molecule called Calcitonin Gene-Related Peptide (CGRP) is found in the skin of chronic pain patients. The source of the increased CGRP was thought to be certain types of sensory nerve fibers in the skin that normally make and release a type or "isoform" called CGRP-alpha. Curiously, however, the authors of the current study found that nerve fibers containing CGRP-alpha are actually reduced under painful conditions leading them to investigate where the increased CGRP in the skin came from.

The answer, surprisingly, was that the skin cells themselves generate increased amounts of a lesser-known "beta" isoform of CGRP. This skin cell-derived CGRP-beta is increased in painful conditions and may be sending pain signals to remaining sensory nerve fibers in the skin. The discovery of CGRP-beta as a therapeutic target presents a potentially important new treatment approach.

"Since CGRP-alpha normally plays an important role in both the regulation of blood flow and normal inflammatory responses, targeting this molecule as a treatment for chronic pain could cause undesired side-effects on circulation," said the paper's corresponding author, Phillip J. Albrecht, Ph.D., Assistant Professor of Neuroscience at Albany Medical College and Vice President at Integrated Tissue Dynamics, LLC, whose team conducted the research. "However, since we know that these two forms of CGRP are derived from separate genes, we may be able to selectively manipulate the beta isoform without affecting the alpha, and dramatically reduce unwanted toxicities -- a common problem limiting the successful development of novel pain therapeutics. This is really a two-for-one discovery: a novel mechanism we can specifically target in a novel skin location."

The discovery that CGRP-beta from keratinocyte cells of skin may be causing pain has profound implications for the treatment and study of a host of chronic neuropathic pain conditions such as shingles, diabetic neuropathy, and physical injury, which altogether affect approximately 30 million people in the U.S. who collectively spend more than $4.5 billion each year to treat chronic nerve pain.

A New Translational Research Platform

The present study was a comprehensive translational research project that integrated results from cell culture, animal models of chronic pain and human pain condition tissues to confirm that CRGP is generated in keratinocytes in each of those systems. The study also demonstrates how a translational research platform can be utilized to discover novel targets and provide drug companies with better predictive data that can be used to make time- and cost-reducing decisions early in the drug discovery process.

To observe differences between CGRP in healthy and inflamed or painful skin, the researchers used an imaging methodology called chemomorphometric analysis (CMA), a technique they use to observe, quantify, and characterize molecules like CGRP in the microscopic structure of skin samples half the size of a pencil eraser. A commercially expanded version of the technique, pioneered by Integrated Tissue Dynamics, LLC, interpreted those results and integrated them with assessments of the genetic activity for each CGRP isoform, which led to the discovery that the beta molecule, not the alpha, predominated in keratinocytes.

"We are especially excited by our translational research results because the identification of beta CGRP in keratinocytes will have immediate value in the clinical setting, and also demonstrates how our CMA technology can deliver on the promise of translational medicine," said Frank L. Rice, Ph.D., Professor of Neuroscience at Albany Medical College and CEO at Integrated Tissue Dynamics, LLC. "Furthermore, the identification of beta CGRP in skin keratinocytes may become a useful independent biomarker for the therapeutic effectiveness of chronic neuropathic pain treatments."

The initial discovery stems from the Ph.D. dissertation research of Albany Medical College graduate student Quanzhi Hou, M.D., who is being co-mentored by Drs. Albrecht and Rice, in conjunction with research by Travis Barr, Ph.D., a former graduate student in the lab. Dr. Hou's research was made possible with the support of an international network of researchers and clinicians from Albany Medical College, the Feinberg School of Medicine of Northwestern University, Boston College, the University at Albany, the University of Brescia (Italy), the Israel Institute of Technology, and companies Vertex Pharmaceuticals and Integrated Tissue Dynamics. Dr. Rice noted that "As a co-discovery in the labs of Albany Medical College and Integrated Tissue Dynamics, we are filing a patent to develop our research and commercialization options."

About the Study

The present study found CGRP levels increased in keratinocytes of painful skin from humans with postherpetic neuralgia (PHN) and complex regional pain syndrome type 1 (CRPS). Elevated CGRP levels were also found in skin keratinocytes from monkeys infected with the equivalent of HIV, and in rats with nerve injury and inflammatory pain conditions similar to those caused by accidents and shingles. CGRP was also found in human keratinocyte cell cultures, and the beta isoform predominated.

Previous research has documented abnormally increased levels of CGRP in the skin, blood, and cerebral spinal fluid under a variety of human and animal chronic pain conditions, and CGRP has consequently become a leading target for chronic pain therapeutics. However, prior research has largely not distinguished between the two isoforms and it has been assumed that the increased CGRP seen in previous studies was the alpha isoform generated by nerves that supply sensory innervation to the skin.

Recently, members of the Intidyn and the Medical College group also published a pioneering study demonstrating that CGRP (likely alpha) innervation to the blood vessels plays a previously unknown role in normal skin sensation. The current findings now add to that story, the role of a second (beta) isoform produced in a unique location (keratinocytes) - which likely also plays a critical role in both normal sensation and chronic painful conditions.


'/>"/>

Contact: Alex Brownstein
alexb@intidyn.com
866-610-7581 x104
Integrated Tissue Dynamics (INTIDYN)
Source:Eurekalert  

Related biology news :

1. NC State researchers get to root of parasite genome
2. Researchers find animal with ability to survive climate change
3. Researchers find an essential gene for forming ears of corn
4. Researchers note differences between people and animals on calorie restriction
5. Researchers study acoustic communication in deep-sea fish
6. Researchers discover that growing up too fast may mean dying young in honey bees
7. Researchers study how pistachios may improve heart health
8. UI researchers find potentially toxic substance present in Chicago air
9. Researchers develop new self-training gene prediction program for fungi
10. Case Western Reserve University researchers track Chernobyl fallout
11. Childrens National researchers develop novel anti-tumor vaccine
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Researchers discover potential cause of chronic painful skin
(Date:3/24/2017)... DUBLIN , Mar 24, 2017 Research ... Vehicle Access System Market Analysis & Trends - Industry Forecast to ... ... poised to grow at a CAGR of around 15.1% over the ... This industry report analyzes the market estimates and forecasts for ...
(Date:3/22/2017)... , March 21, 2017   Neurotechnology ... object recognition technologies, today announced the release of ... (SDK), which provides improved facial recognition using up ... on a single computer. The new version uses ... improve accuracy, and it utilizes a Graphing Processing ...
(Date:3/20/2017)... -- At this year,s CeBIT Chancellor Dr. Angela Merkel ... Chancellor came to the DERMALOG stand together with the Japanese Prime Minster ... country. At the largest German biometrics company the two government leaders could ... recognition as well as DERMALOGĀ“s multi-biometrics system.   ... ...
Breaking Biology News(10 mins):
(Date:6/23/2017)... ... June 23, 2017 , ... The Academy ... and the University Aviation Association (UAA), the unifying voice for collegiate aviation education, ... will encourage teamwork, competition, and success through a STEM-based education platform. , Much ...
(Date:6/22/2017)... Wendelsheim, Germany (PRWEB) , ... June 22, 2017 ... ... , is taking over the allergy specialists DST Diagnostische Systeme & Technologien GmbH, ... We all know someone who suffers from hay fever, urticaria, asthma, atopic eczema ...
(Date:6/22/2017)... ... 2017 , ... The first human cell line HeLa, established in 1951, has ... cross-contamination of human cell lines with HeLa cells were published. Until recently, cross-contamination and ... and is associated with dramatic consequences for research. , In this educational webinar, ...
(Date:6/20/2017)... ... , ... Biologist Dawn Maslar MS has found a biomarker that she claims ... Choose: The Neuroscience of Meeting, Dating, Losing Your Mind, and Finding True Love, Maslar ... next step, in my estimation, was to scientifically track the evidence of commitment in ...
Breaking Biology Technology: