Navigation Links
Researchers discover new shapes of microcompartments

In nature and engineering, microcompartments molecular shells made of proteins that can encapsulate cellular components provide a tiny home for important reactions. In bacterial organelles, for example, microcompartments known as carboxysomes trap carbon dioxide and convert it into sugar as an energy source.

These shells naturally buckle into a specialized 20-sided shape called an icosahedron. But now researchers at Northwestern University's McCormick School of Engineering and Applied Science have discovered and explored new shapes of microcompartment shells. Understanding just how these shells form could lead to designed microreactors that mimic the functions of these cell containers or deliver therapeutic materials to cells at specific targeted locations.

The research, led by Monica Olvera de la Cruz, professor of materials science and chemical and biological engineering and chemistry, with Graziano Vernizzi, research assistant professor, and research associate Rastko Sknepnek, was recently published in the Proceedings of the National Academy of Sciences.

Olvera de la Cruz and her group knew how shells made up of just one structural unit worked their elasticity and rigidity cause them to naturally buckle into icosahedra. But they began considering how to create heterogenous shells by using more than one component. Using physical concepts, mathematical analysis, and running simulations, they formulated a new model for the spontaneous faceting of shells.

"The question was: if a shell is made up of components that have different rigidities or different mechanical properties, what would be the shape it takes?" Olvera de la Cruz said.

The only faceted shape previously known for molecular closed shells, such as viruses and fullerenes, was the icosahedron. But Olvera de la Cruz and her colleagues discovered that when a shell is made up of two components with different elasticities, they buckle into many different shapes, including dodecahedra (12 sides) and octahedra (8 sides) and irregular polyhedra, which surfaces are "decorated" by the natural segregation of components to yield the lowest energy conformation.

Some of these shapes had been seen in nature before sometimes in the bacterial organelles' carboxysomes but they were just called "quasi-icosahedra" because nobody knew how to characterize them and how they worked. Armed with their model, however, engineers could now potentially design shells to perform specific tasks.

"If you just want to pack something into a shell, you use a sphere," she said. "But if you want to create a shell that has intelligence and can fit somewhere perfectly because it is decorated with the right proteins, then you can use different shapes."

These designed shells could act as containers or microreactors within the body. "It's a very efficient way to deliver something," she said.

Next the group hopes to determine how general their model is and continue researching how different shapes are made.

"I think it can open a new field of research," Olvera de la Cruz said.


Contact: Megan Fellman
Northwestern University

Related biology news :

1. NC State researchers get to root of parasite genome
2. Researchers find animal with ability to survive climate change
3. Researchers find an essential gene for forming ears of corn
4. Researchers note differences between people and animals on calorie restriction
5. Researchers study acoustic communication in deep-sea fish
6. Researchers discover that growing up too fast may mean dying young in honey bees
7. Researchers study how pistachios may improve heart health
8. UI researchers find potentially toxic substance present in Chicago air
9. Researchers develop new self-training gene prediction program for fungi
10. Case Western Reserve University researchers track Chernobyl fallout
11. Childrens National researchers develop novel anti-tumor vaccine
Post Your Comments:
(Date:5/20/2016)... -- VoiceIt is excited to announce its new marketing ... working together, VoiceIt and VoicePass will offer an ... slightly different approaches to voice biometrics, collaboration between ... Both companies ... "This marketing and technology partnership allows VoiceIt ...
(Date:5/9/2016)... 2016 Elevay is currently known ... freedom for high net worth professionals seeking travel for ... connected world, there is still no substitute for a ... sealing your deal with a firm handshake. This is ... advantage of citizenship via investment programs like those offered ...
(Date:4/28/2016)... 2016 First quarter 2016:   ... with the first quarter of 2015 The gross margin ... (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... unchanged, SEK 7,000-8,500 M. The operating margin for 2016 ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... ... operations for Amgen, will join the faculty of the University of North ... adjunct professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on ...
(Date:6/24/2016)... on a range of subjects including policies, debt and investment ... Speaking at a lecture to the Canadian Economics ... the country,s inflation target, which is set by both the ... "In certain areas there needs to be frequent ... not sit down and address strategy together?" He ...
(Date:6/24/2016)... ... ... Researchers at the Universita Politecnica delle Marche in Ancona combed medical journal ... Their findings are the subject of a new article on the Surviving Mesothelioma website. ... the blood, lung fluid or tissue of mesothelioma patients that can help point doctors ...
(Date:6/23/2016)... June 23, 2016   Boston Biomedical , ... compounds designed to target cancer stemness pathways, announced ... granted Orphan Drug Designation from the U.S. Food ... gastric cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin ... to inhibit cancer stemness pathways by targeting STAT3, ...
Breaking Biology Technology: