Navigation Links
Researchers discover natural herbicide released by grass
Date:11/8/2007

Certain varieties of common fescue lawn grass come equipped with their own natural broad-spectrum herbicide that inhibits the growth of weeds and other plants around them.

Cornell researchers have identified the herbicide as an amino acid called meta-tyrosine, or m-tyrosine, that these lawn grasses exude from their roots in large amounts. This amino acid is a close relative of para-tyrosine (p-tyrosine), one of the 20 common amino acids that form proteins.

Reporting on the discovery in the current issue of the Proceedings of the National Academies of Science, Frank Schroeder, the paper's senior author and an assistant scientist at the Boyce Thompson Institute for Plant Research on Cornell's campus, said, "We at first didn't believe m-tyrosine had anything to do with the observed herbicidal activity, but then we tested it and found it to be extremely toxic to plants but not toxic to fungi, mammals or bacteria."

Co-author Cecile Bertin, Ph.D. '05, research director for PharmAfrican, a Montreal-based bio-pharmaceuticals company, made the initial discovery that fescue grasses inhibit plants from growing around them.

While m-tyrosine itself is too water soluble to be applied directly as a herbicide, this research may lead to development of new varieties of fescue grasses that suppress weeds more effectively, which could reduce the need for synthetic herbicides, said Schroeder. By increasing our understanding of basic plant biology, the discovery of m-tyrosine's herbicidal properties could also help researchers discover more sustainable ways to control weeds or completely new herbicides, Schroeder added.

He and his colleagues are now conducting experiments to understand how m-tyrosine works as a plant killer. Plants depend on the production of large amounts of another common amino acid, phenylalanine, which is essential for the biosynthesis of wood, cell walls and lignin.

"Phenylalanine, m-tyrosine and p-tyrosine are structurally all very similar," said Schroeder. "Because of this similarity, we think that m-tyrosine might simulate high concentrations of phenylalanine, which would normally provide negative feedback for phenylalanine biosynthesis" and, thereby, suppress plant growth.

Schroeder and colleagues are also trying to understand why fescue grasses do not succumb to the toxin themselves. They found that when phenylalanine was added to plants dying from m-tyrosine exposure, they recovered. As a result, the researchers suspect that these fescue varieties may overproduce phenylalanine to save themselves from their own toxin.

People have not recognized how effective some fescue varieties are at suppressing weeds because m-tyrosine production appears to be highly dependent on environmental conditions, Schroeder said, which is another area that the researchers are currently investigating.


'/>"/>

Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University Communications
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/22/2016)... November 22, 2016 According to the new market ... Print, Face, Vein, Signature, Voice), Multi-Factor), Component (Hardware and Software), Function (Contact ... MarketsandMarkets, the market is expected to grow from USD 10.74 Billion in ... 16.79% between 2016 and 2022. Continue Reading ... ...
(Date:11/17/2016)... 17, 2016 Global Market Watch: Primarily ... Banks, Population-Based Banks and Academics) market is to witness a ... Biobanks shows the highest Compounded Annual Growth Rate (CAGR) of ... during the analysis period 2014-2020. North America ... followed by Europe at 9.56% respectively. ...
(Date:11/15/2016)... Research and Markets has announced the addition of the ... offering. ... The global bioinformatics market is ... Billion in 2016, growing at a CAGR of 21.1% during the ... driven by the growing demand for nucleic acid and protein sequencing, ...
Breaking Biology News(10 mins):
(Date:12/9/2016)... ... ... Aditya Humad, Acting CFO of AxioMed and Managing Partner of KICVentures, is ... is now gaining interest from Silicon Valley. “It was satisfying to complete the due ... say that, “We expect interest to continue to rise as AxioMed completes its cleanroom ...
(Date:12/9/2016)... PUNE, India , December 9, 2016 ... Product & Services (Primer, Probe, Custom, Predesigned, Reagent Equipment), Application (Research, ... - Forecasts to 2021" published by MarketsandMarkets, the global market is ... Billion in 2016, at a CAGR of 10.6% during the forecast ... ...
(Date:12/8/2016)... Philadelphia, PA (PRWEB) , ... December 08, 2016 ... ... fan engagement platforms, the business of innovation is taking over sports. On Thursday, ... executive will explore how technology is disrupting the playing field at a Smart ...
(Date:12/8/2016)... (PRWEB) , ... December 08, 2016 , ... ... light to control cells — optogenetics — is key to exciting advances in ... the art, spatially patterned light projected via free-space optics stimulates small, transparent organisms ...
Breaking Biology Technology: