Navigation Links
Researchers discover how inhibitory neurons behave during critical periods of learning
Date:8/25/2013

PITTSBURGHWe've all heard the saying "you can't teach an old dog new tricks." Now neuroscientists are beginning to explain the science behind the adage.

For years, neuroscientists have struggled to understand how the microcircuitry of the brain makes learning easier for the young, and more difficult for the old. New findings published in the journal Nature by Carnegie Mellon University, the University of California, Los Angeles and the University of California, Irvine show how one component of the brain's circuitry inhibitory neurons behave during critical periods of learning. The paper is available online as an Advance Online Publication (http://dx.doi.org/10.1038/nature12485).

The brain is made up of two types of cells inhibitory and excitatory neurons. Networks of these two kinds of neurons are responsible for processing sensory information like images, sounds and smells, and for cognitive functioning. About 80 percent of neurons are excitatory. Traditional scientific tools only allowed scientists to study the excitatory neurons.

"We knew from previous studies that excitatory cells propagate information. We also knew that inhibitory neurons played a critical role in setting up heightened plasticity in the young, but ideas about what exactly those cells were doing were controversial. Since we couldn't study the cells, we could only hypothesize how they were behaving during critical learning periods," said Sandra J. Kuhlman, assistant professor of biological sciences at Carnegie Mellon and member of the joint Carnegie Mellon/University of Pittsburgh Center for the Neural Basis of Cognition.

The prevailing theory on inhibitory neurons was that, as they mature, they reach an increased level of activity that fosters optimal periods of learning. But as the brain ages into adulthood and the inhibitory neurons continue to mature, they become even stronger to the point where they impede learning.

Newly developed genetic and imaging technologies are now allowing researchers to visualize inhibitory neurons in the brain and record their activity in response to a variety of stimuli. As a postdoctoral student at UCLA in the laboratory of Associate Professor of Neurobiology Joshua T. Trachtenberg, Kuhlman and her colleagues used these new techniques to record the activity of inhibitory neurons during critical learning periods. They found that, during heightened periods of learning, the inhibitory neurons didn't fire more as had been expected. They fired much less frequently up to half as often.

"When you're young you haven't experienced much, so your brain needs to be a sponge that soaks up all types of information. It seems that the brain turns off the inhibitory cells in order to allow this to happen," Kuhlman said. "As adults we've already learned a great number of things, so our brains don't necessarily need to soak up every piece of information. This doesn't mean that adults can't learn, it just means when they learn, their neurons need to behave differently."


'/>"/>

Contact: Jocelyn Duffy
jhduffy@andrew.cmu.edu
412-268-9982
Carnegie Mellon University
Source:Eurekalert

Related biology news :

1. UCLA researchers invent portable device for common kidney tests
2. Harvard Stem Cell researchers create cells that line blood vessels
3. Researchers figure out why gold nanoparticles can penetrate cell walls
4. Finnish researchers develop quick test kit for detecting phenolic compounds in drinking water
5. BIDMC cardiovascular institute researchers will lead $4 million NIH grant to study micrornas
6. UC Davis researchers discover molecular target for the bacterial infection brucellosis
7. Researchers report a critical role for the complement system in early macular degeneration
8. Researchers study seleniums effects on horses
9. Researchers discover protein that helps plants tolerate drought, flooding, other stresses
10. Fresh analysis of dinosaur skulls by penn researchers finds 3 species are 1
11. HSCI researchers extend human epigenomic map
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/10/2017)... , Feb 10, 2017 ... new report "Personalized Medicine - Scientific and Commercial Aspects" ... ... personalized medicine. Diagnosis is integrated with therapy for selection of ... on early detection and prevention of disease in modern medicine. ...
(Date:2/8/2017)... YORK , Feb. 7, 2017 ... Driven largely by the confluence of organizations, desires ... distaste for knowledge-based systems (password and challenge questions), ... industrial, and government systems. The market is driven ... a demarcation between consumer and enterprise uses cases, ...
(Date:2/6/2017)... 6, 2017 According to Acuity Market ... border authorities to continue to embrace biometric and ... 2143 Automated Border Control (ABC) eGates and 1436 ... more than 163 ports of entry across the ... achieving a combined CAGR of 37%. APC Kiosks ...
Breaking Biology News(10 mins):
(Date:2/23/2017)... NEW YORK , Feb. 23, 2017 /PRNewswire/ ... leading digital health company, and Digital Noema ... and remote patient monitoring, announce they are partnering ... DN Telehealth maximizes collaboration compatibility for ... consultations beyond a physical clinical setting to include ...
(Date:2/23/2017)... Atlanta, it seems everyone has a chance to express their ... expressive and dynamic community unlike any other. The businesses that ... With their newest salon in ... on that tradition with a unique, fresh approach to head ... the newest of 13 nationwide locations, each of them well-situated ...
(Date:2/23/2017)... ... February 23, 2017 , ... ... annual Inventors Recognition Reception at Purdue Research Park of West Lafayette, ... in recognition of outstanding contributions to, and success with, commercializing discoveries from Purdue ...
(Date:2/23/2017)... SAN FRANCISCO , Feb. 23, 2017 /PRNewswire/ ... and Beyond Type 1, a not-for-profit advocacy and education ... announced a grant from Beyond Type 1 to support ... 1 and other insulin-requiring diabetes.  For ... stem cell-derived cell replacement therapies with a focus on ...
Breaking Biology Technology: