Navigation Links
Researchers discover architecture for fundamental processes of life
Date:5/13/2008

This release is available in French.

Montreal, May 13, 2008 A team of Canadian researchers has completed a massive survey of the network of protein complexes that orchestrate the fundamental processes of life. In the online edition of the journal Science, researchers from the Universit de Montral describe protein complexes and networks of complexes never before observed including two implicated in the normal mechanisms by which cells divide and proliferate and another that controls recycling of the molecular building blocks of life called autophagy.

These processes are implicated in diseases such as cancers and autophagy has recently been shown to be involved in degenerative neurological disorders such as Alzheimer's and Huntington's diseases. The discovery will fill gaps in basic knowledge about the workings and evolutionary origins of the living cell and provide new avenues to explore in linking these fundamental processes to human disease.

The study was led by Stephen Michnick, a Universit de Montral biochemistry professor and Canada Research Chair in Integrative Genomics, along with Universit de Montral co-first authors: Kirill Tarassov, Vincent Messier, Christian Landry and Stevo Radinovic. Collaborators from McGills Department of Biology included Canadian genomics pioneer Prof. Howard Bussey and Prof. Jackie Vogel.

Our team systematically analyzed the interactions of proteins of bakers yeast, a unicellular organism confirmed to provide insight into fundamental processes shared by most living cells including those of humans, explained Prof. Michnick.

New technology makes discovery possible

The examination of protein complexes was made possible by a unique technology developed by Prof. Michnick with his post-doctoral fellows and graduate students. The novel technology allows interactions between proteins to be studied in their nearly natural state in the cell. With this technology, the scientists performed approximately 15 million pair-wise tests to identify about 3,000 interactions between protein pairs.

Since protein-to-protein association largely defines their function, this is a major advancement towards scientific understanding of the inner life of human cells. Thanks to Prof. Michnicks technology, the researchers also uncovered the architecture of protein complexes key information necessary to determine how proteins work together to orchestrate complex biochemical processes.

The technologies and resources developed for this study can be applied to investigate protein networks in more complex organisms including crop plant and human cells, said Prof. Michnick. They may also be used to link multiple genes implicated in complex human diseases to common cellular processes. Whats more, applications to diagnostic tests and the development of drugs and antibodies against human cancers can be readily envisioned.


'/>"/>

Contact: Sylvain-Jacques Desjardins
sylvain-jacques.desjardins@umontreal.ca
514-343-7593
University of Montreal
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/29/2016)... , Nov. 29, 2016   Neurotechnology ... and object recognition technologies, today released FingerCell ... fingerprint recognition solutions that run on low-power, ... template using less than 128KB of memory, ... devices that have limited on-board resources, such ...
(Date:11/22/2016)... According to the new market research report "Biometric ... Signature, Voice), Multi-Factor), Component (Hardware and Software), Function (Contact and Non-contact), Application, ... is expected to grow from USD 10.74 Billion in 2015 to reach ... and 2022. Continue Reading ... ...
(Date:11/17/2016)... 17, 2016 Global Market Watch: Primarily ... Banks, Population-Based Banks and Academics) market is to witness a ... Biobanks shows the highest Compounded Annual Growth Rate (CAGR) of ... during the analysis period 2014-2020. North America ... followed by Europe at 9.56% respectively. ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... world leader in rapid infectious disease tests, introduced the Company,s newest product, the INSTI ... (Photo: http://photos.prnewswire.com/prnh/20161201/444905 ) Continue Reading ... ... , bioLytical was invited by the Clinton ... HIV Self Test to 350 pharmacy representatives in Nairobi and ...
(Date:11/30/2016)... today announced the appointment of Joshua F. Coleman , ... Dr. Coleman will oversee clinical content development and curation of ... software suite empowers molecular pathologists with a seamless workflow for ... from quality control through reporting. ... , , ...
(Date:11/30/2016)... Nov. 30, 2016 /PRNewswire/ - Portage Biotech Inc. ("Portage" ... PBT.U), is excited to announce the formation of ... developing preclinical ophthalmology assets through proof of concept. ... created by Portage Pharmaceuticals Limited and being developed ... surface and anterior segment diseases. This agent has ...
(Date:11/30/2016)... 2016  The Allen Institute for Cell Science ... publicly available collection of gene edited, fluorescently tagged ... cellular structures with unprecedented clarity. Distributed through the ... are a crucial first step toward visualizing the ... makes human cells healthy and what goes wrong ...
Breaking Biology Technology: