Navigation Links
Researchers devise means to create blood by identifying earliest stem cells
Date:8/29/2008

Johns Hopkins researchers have discovered the earliest form of human blood stem cells and deciphered the mechanism by which these embryonic stem cells replicate and grow. They also found a surprising biological marker that pinpoints these stem cells, which serve as the progenitors for red blood cells and lymphocytes.

The biochemical marker, angiotensin-converting enzyme (ACE), is well known for its role in the regulation of blood pressure, blood vessel growth, and inflammation. ACE inhibitors are already widely used to treat hypertension and congestive heart failure, and the findings are, the researchers say, likely to hold promise for developing new treatments for heart diseases, anemias, leukemia and other blood cancers, and autoimmune diseases because they show for the first time that ACE plays a fundamental role in the very early growth and development of human blood cells.

"We figured out how to get the 'mother' of all blood stem cells with the right culture conditions," says Elias Zambidis, M.D., Ph.D., of the Institute of Cell Engineering at the Johns Hopkins University School of Medicine and the Division of Pediatric Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins.

"There is real hope that in the future we can grow billions of blood cells at will to treat blood-related disorders, and just as critically if not more so, we've got ACE as a 'new' old marker to guide our work," Zambidis adds.

Researchers did not expect ACE to have a role in blood stem cells, he notes, "but were very pleasantly surprised to discover it as a beacon for finding the earliest blood stem cells known, as well as new ways to find and manipulate this marker to make them grow."

The team's findings, published Aug. 26 in the online edition of the journal Blood, explain that these earliest stem cells marked by ACE, called hemangioblasts, first arise normally in the developing human fetus, when a woman is three or four weeks pregnant. Hemangioblasts can now be derived in unlimited supply experimentally from cultured human embryonic stem cells, which are the origin of all cell types in the body. These hemangioblasts go on to become either blood cells or endothelial cells, which form the inner lining of the heart, veins and arteries, and lymph vessels.

The research grew out of Zambidis' interest in understanding the complex biological processes of blood development and the transformation of embryonic stem cells into the various types of cells that make up the human body.

Hemangioblasts make the body's earliest form of blood in the fetal yolk sac, which nourishes a fertilized egg, and later in the fetal liver and bone marrow. However, because human embryonic cells disappear early in gestation, their role in the early production of blood could not, to the researchers' knowledge, be studied in humans because scientists had no way to identify these human progenitor blood stems cells to follow their development. The scientists suspected they existed in humans, however, because they have been found in mice and zebra fish.

To find the blood stem cell, Zambidis' team grew human embryonic stem cells in culture and fed them growth factors over 20 days. Each time the cell colonies expanded, the researchers sampled individual cells, searching for ones capable of making both endothelial and blood cells, the hallmark of hemangioblasts.

They plucked the newly discovered hemangioblasts from culture dishes, grew them in conditions that Zambidis and his team developed to speed replication, and tested cells for their ability to make endothelial and blood cells. Cells capable of making endothelial cells and all the elements of blood (platelets, and white and red cells) were specifically marked with ACE on their outer surface.

The researchers found not only that ACE was a marker for hemangioblasts, but turning off the enzyme also helps guide the cells' replication and maturation into either blood or endothelial cells. By treating the hemangioblasts with losartan, an ACE pathway blocking agent routinely used to treat high blood pressure, dramatically increased the rate of blood cell production.

The next step, Zambidis adds, is to test this research in animal models and show that "we can make lots and lots of blood cells from human stem cells for transfusions, regenerate new vascular trees for heart diseases, as well as create test tube factories for making transplantable blood cells that treat diseases. We are very far from treatment," Zambidis cautions, "but this is a big step."

If the new technique of mass producing progenitor blood cells is eventually proven to work in humans, it would allow patients getting bone marrow transplants to have their own stem cells creating the blood they need, significantly reducing rejection risk.


'/>"/>

Contact: Valerie Mehl
mehlva@jhmi.edu
410-955-1287
Johns Hopkins Medical Institutions
Source:Eurekalert

Related biology news :

1. Researchers discover atomic bomb effect results in adult-onset thyroid cancer
2. Antidepressants need new nerve cells to be effective, UT Southwestern researchers find
3. Indiana U researchers launch social networking and research management tool for scientists
4. UC Davis researchers define characteristics, treatment options for XXYY syndrome
5. Munich researchers discover key allergy gene
6. Rapid test for pathogens developed by K-State researchers
7. OU researchers isolate microorganisms that convert hydrocarbons to natural gas
8. UH researchers win top prize for research with humanitarian applications
9. Caltech researchers awarded $10M for molecular programming project
10. Researchers study facial structures, brain abnormalities to reveal formula for detection of autism
11. Mount Sinai researchers discover technology that silences genes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/9/2017)... MOUNTAIN VIEW, Calif. , March 9, 2017 /PRNewswire/ ... 23andMe , the leading personal genetics company, are ... can now provide customers with personalized nutrition plans that ... biometrics, but also genetic markers impacting how their body ... personalized food decision support platform uses biometrics such as ...
(Date:3/6/2017)... March 6, 2017 Mintigo , ... today announced Predictive Sales Coach TM , its ... sales intelligence into Salesforce. This unique AI application ... sales organizations with deep knowledge of their customers ... intelligent engagement. Predictive Sales Coach extends Mintigo,s existing ...
(Date:3/2/2017)... 2017 Who risk to be deprived of ... full report: https://www.reportbuyer.com/product/4313699/ WILL APPLE AND ... Fingerprint sensors using capacitive technology represent a fast ... Idex forecasts an increase of 360% of the number ... the fingerprint sensor market between 2014 and 2017 (source ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... ... 2017 , ... AxioMed president, Jake Lubinski, describes the AxioMed ... deformed, which is identical to how the human discs work to distribute force. ... to its natural state along a hysteresis curve, exactly like a healthy human ...
(Date:3/23/2017)... 2017  Northwest Biotherapeutics (OTCQB: NWBO) (NW Bio), ... for solid tumor cancers, today announced that yesterday ... announced last Friday, March 17, 2017. ... securities totaling 28,843,692 shares, comprised of 18,843,692 common ... of Class C Warrants pre-funded at the closing ...
(Date:3/23/2017)... -- BioPharmX Corporation (NYSE MKT: BPMX), a specialty pharmaceutical ... reported financial results for the quarter and year ... update on the company,s clinical development efforts and ... pleased to report that last year was a ... Krammer. "We achieved key clinical milestones and attracted ...
(Date:3/23/2017)... , March 23, 2017 NetworkNewsWire ... ... death, putting significant strain on health care systems, in terms ... diagnoses rises, so too does the development of innovative and ... side effects. Among the many types of cancer treatments, a ...
Breaking Biology Technology: