Navigation Links
Researchers develop simple method to create natural drug products
Date:9/4/2007

Until now, only the intricate machinery inside cells could take a mix of enzyme ingredients, blend them together and deliver a natural product with an elaborate chemical structure such as penicillin. Researchers at UC San Diegos Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences and the University of Arizona have for the first time demonstrated the ability to mimic this process outside of a cell.

A team led by Qian Cheng and Bradley Moore of Scripps was able to synthesize an antibiotic natural product created by a Hawaiian sea sediment bacterium. They did so by combining a cocktail of enzymes, the protein catalysts inside cells, in a relatively simple mixing process inside a laboratory flask. The research paper, along with a companion study describing a similar process achieved at Harvard Medical School with anti-tumor products, is published in the September issue of Nature Chemical Biology.

This study may signal the start of a new era in how drugs are synthesized, said Moore, a professor in the Center for Marine Biotechnology and Biomedicine at Scripps. Assembling all the enzymes together in a single reaction vessel is a different way to make a complex molecule.

While much more work is needed to employ this process on a mass scale, the achievement proves that such synthesis is possible relatively cheaply and easilywithout the use of man-made chemicalsotherwise known as green chemistry.

Most of the medicinal drugs on the market today are made synthetically. Researchers such as Moore and Scripps Oceanographys Bill Fenical have looked to the oceans as rich sources of new natural products to potentially combat diseases such as cancer.

The antibiotic synthesized in Moores laboratory, called enterocin, was assembled in approximately two hours. Such a compound would normally take months if not a year to prepare chemically, according to Moore.

Rather than a eureka moment that led to the breakthrough, Moore said the process was achieved incrementally. The time-consuming work was spent beforehand identifying and preparing the enzymes that would ultimately catalyze the synthesis, also known as assembling the biosynthetic pathway.

Weve been preparing for some time now a biological toolbox, said Moore. In this new process the enzymes become the tools to do the synthesis.

An article in Nature Chemical Biology by Robert Fecik of the University of Minnesota indicated that Moore and co-workers have now taken biosynthetic pathway reconstruction to a new level.

The new research also carries the potential to combine certain natural enzymes to produce new molecules that typically cannot be found in nature with the goal of developing new drugs. Moore calls these unnatural natural products.


'/>"/>

Contact: Mario Aguilera, Cindy Clark
scrippsnews@ucsd.edu
858-534-3624
University of California - San Diego
Source:Eurekalert

Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. NYU researchers simulate molecular biological clock
5. Researchers reveal the infectious impact of salmon farms on wild salmon
6. Researchers identify target for cancer drugs
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/15/2016)... , April 15, 2016  A new ... make more accurate underwriting decisions in a fraction ... timely, competitively priced and high-value life insurance policies ... screenings. With Force Diagnostics, rapid testing ... lifestyle data readings (blood pressure, weight, pulse, BMI, ...
(Date:3/31/2016)... BOCA RATON, Florida , March 31, 2016 /PRNewswire/ ... LEGX ) ("LegacyXChange" or the "Company") ... presentation for potential users of its soon to be ... The video ( https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also ... by the use of DNA technology to an industry ...
(Date:3/22/2016)... PUNE, India , March 22, 2016 ... new market research report "Electronic Sensors Market for ... Fingerprint, Proximity, & Others), Application (Communication & ... and Geography - Global Forecast to 2022", ... consumer industry is expected to reach USD ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... Epic Sciences unveiled a liquid biopsy ... PARP inhibitors by targeting homologous recombination deficiency (HRD) ... test has already been incorporated into numerous clinical ... Over 230 clinical trials are investigating ... PARP, ATM, ATR, DNA-PK and WEE-1. Drugs targeting ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a ... eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research ... by providing practical tips, tools, and strategies for clinical researchers. , “The landscape ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
(Date:6/23/2016)... Lawrence, MA (PRWEB) , ... June 23, 2016 ... ... the Peel Plate® YM (Yeast and Mold) microbial test has received AOAC Research ... test platform of microbial tests introduced last year,” stated Bob Salter, Vice President ...
Breaking Biology Technology: